Answer:
1] 8500000 = <u>8.5 × 10⁶</u>
2] .000072 = <u>7.2 × 10⁻⁵</u>
3] 5.3 × 10⁴ = <u>53000</u>
4] 2.8 × 10⁻³ = <u>0.0028</u>
5] Velocity = 
V = 
<u>V = 5 m/s</u>
6] Acceleration = 
A = 
A = 
<u>A = 3 m/s²</u>
B. Gravity and air resistance.
Answer:
The magnitude of magnetic field of both wires is β= 13. 33
T
Explanation:



Using the right hand rule field magnetic as the current go in opposite direction the field in the point exactly in the middle have the same direction both so

They have the same direction and the P point is the middle as the same current field can be find:

T
=13.33
T
<u>Answer</u>
81.94 m
<u>Explanation</u>
The centripetal force of an object moving in a circular path is given by:
F = mv²/r Where m is the mass of the object, v is the constant velocity and r is the radius of the curve.
F = mv²/r
3,300 = (1600×13²)/r
3,300 = 270,400/r
r = 270,400/3,300
= 81.94 m
Answer:
Explanation:
When two objects are in thermal equilibrium they are said to have the same temperature. During the process of reaching thermal equilibrium, heat, which is a form of energy, is transferred between the object
which means that it refers to transfer through a selectively permeable partition, the contact path.[1] For the relation of thermal equilibrium, the contact path is permeable only to heat; it does not permit the passage of matter or work; it is called a diathermal connection. According to Lieb and Yngvason, the essential meaning of the relation of thermal equilibrium includes that it is reflexive and symmetric. It is not included in the essential meaning whether it is or is not transitive. After discussing the semantics of the definition, they postulate a substantial physical axiom, that they call the "zeroth law of thermodynamics", that thermal equilibrium is a transitive relation. They comment that the equivalence classes of systems so established are called isotherms
plz dont be mad that i coppied it sounded so good so i wanted veryone to see it when they look bc i am dumb