Answer:
The angular velocity is 15.37 rad/s
Solution:
As per the question:

Horizontal distance, x = 30.1 m
Distance of the ball from the rotation axis is its radius, R = 1.15 m
Now,
To calculate the angular velocity:
Linear velocity, v = 
v = 
v = 
v = 
Now,
The angular velocity can be calculated as:

Thus

The acceleration and distance is related to the following expression:
y=v0*t + a*t^2/2 ; v0=0
y=44.1*100/2 = 2205m
hence, the speed will be
v=0 + a*t = 441m/s
from that height it will just be subjected to the gravitational acceleration
0=v_acc^2 -2g*y_free
y_free = v_acc^2/2g = 9922.5m
<span>y_max = y_acc+y_free = 441+9922.5 =10363.5m</span>
<span>The thermal energy is the work done by friction. If Justin is at rest intially, his potential energy is MGH. Hence we have 30* 9.8*8 = 2352N. Where m is mass, g accleration due to gravity, and h is the height. When he gets to the bottom of the slide, his potential energy is converted to usable kinetic energy, so we have 1/2 mv^2. We end up with 1/2 * 30 * (11)^2 = 1815N. He started with 2352N and ended up with 1815N. Hence the thermal energy is 2352 - 1815 = 537N.</span>
Answer:
The direction of the B-field is in the +y-direction.
Explanation:
The corresponding formula is

This means, we should use right-hand rule.
Our index finger is pointed towards +x-direction (direction of velocity),
our middle finger should point towards the direction of the B-field,
and our thumb should point towards the +z-direction (direction of the force).
Since our middle finger in this situation points towards +y-direction, the B-field should be in +y-direction.
