Time = (distance) / (speed)
<em></em>
Time = (450 km) / (100 m/s)
Time = (450,000 m) / (100 m/s)
Time = <em>4500 seconds </em>(that's 75 minutes)
Note:
This is about HALF the speed of the passenger jet you fly in when you go to visit Grandma for Christmas.
If the International Space Station flew at this speed, it would immediately go ker-PLUNK into the ocean.
The speed of the International Space Station in its orbit is more like 3,100 m/s, not 100 m/s.
Answer:
496.7 K
Explanation:
The efficiency of a Carnot engine is given by the equation:

where:
is the temperature of the hot reservoir
is the temperature of the cold reservoir
For the engine in the problem, we know that
is the efficiency
is the temperature of the cold reservoir
Solving for
, we find:

Assume that the small-massed particle is
and the heavier mass particle is
.
Now, by momentum conservation and energy conservation:


Now, there are 2 solutions but, one of them is useless to this question's main point so I excluded that point. Ask me in the comments if you want the excluded solution too.

So now, we see that
and
. So therefore, the smaller mass recoils out.
Hope this helps you!
Bye!
<span>Heat comes from stove flame to the sauce pan by radiation through infrared energy, heat conducts the metal of the sauce pan; Convection brings cool water to the hot surface at the bottom of the hot sauce pan until all or most of the water is hot enough to boil.</span>