The scale in N, reading if the elevator moves upward at a constant speed of 1.5 m/s^2 is 862.5 N.
weight of man = 75kg
speed of elevator, a = 1.5 






So, the scale reading in the elevator is greater than his 862.5 N weight. This indicates that the person is being propelled upward by the scale, which it must do in order to do so, with a force larger than his weight. According to what you experience in quickly accelerating or slowly moving elevators, it is obvious that the faster the elevator acceleration, the greater the scale reading.
Speed can be defines as the pace at which the position of an object changes in any direction. Since speed simply has a direction and no magnitude, it is a scalar quantity.
Learn more about speed here:-
brainly.com/question/19127881
#SPJ4
Answer:
Equation for SHM can be written
V = w A cos w t where w is the angular frequency and the velocity is a maximum at t = 0
V1 = w1 A cos w1 t
V2 = w2 A cos w2 t
V2 / V1 = w2 / w1 since cos X t = 1 if t = zero
V2 / V1 = 2 pi f2 / (2 pi f1) = f2 / f1 = T1 / T2
If the velocity is twice as large the period will be 1/2 long
Answer:
a) the distance between her and the wall is 13 m
b) the period of her up-and-down motion is 6.5 s
Explanation:
Given the data in the question;
wavelength λ = 26 m
velocity v = 4.0 m/s
a) How far from the wall is she?
Now, The first antinode is formed at a distance λ/2 from the wall, since the separation distance between the person and wall is;
x = λ/2
we substitute
x = 26 m / 2
x = 13 m
Therefore, the distance between her and the wall is 13 m
b) What is the period of her up-and-down motion?
we know that the relationship between frequency, wavelength and wave speed is;
v = fλ
hence, f = v/λ
we also know that frequency is expressed as the reciprocal of the time period;
f = 1/T
Hence
1/T = v/λ
solve for T
Tv = λ
T = λ/v
we substitute
T = 26 m / 4 m/s
T = 6.5 s
Therefore, the period of her up-and-down motion is 6.5 s
-- Put the rod into the freezer for a while. As it cools,
it contracts (gets smaller) slightly.
-- Put the cylinder into hot hot water for a while. As it heats,
it expands (gets bigger) slightly.
-- Bring the rod and the cylinder togther quickly, before the
rod has a chance to warm up or the cylinder has a chance
to cool off.
-- I bet it'll fit now.
-- But be careful . . . get the rod exactly where you want it as fast
as you can. Once both pieces come back to the same temperature,
and the rod expands a little and the cylinder contracts a little, the fit
will be so tight that you'll probably never get them apart again, or even
move the rod.
<span>The egg doesn't break when it hits the sheet because the impact time is longer. Momentum means the egg is slowed rather than coming to an abrubt halt. The softer the object that the egg hits, the longer the time it takes to break. A sheet is so soft that the force is never high enough for the egg to break.</span>