Answer:
a) F = 4.9 10⁴ N, b) F₁ = 122.5 N
Explanation:
To solve this problem we use that the pressure is transmitted throughout the entire fluid, being the same for the same height
1) pressure is defined by the relation
P = F / A
to lift the weight of the truck the force of the piston must be equal to the weight of the truck
∑F = 0
F-W = 0
F = W = mg
F = 5000 9.8
F = 4.9 10⁴ N
the area of the pisto is
A = pi r²
A = pi d² / 4
A = pi 1 ^ 2/4
A = 0.7854 m²
pressure is
P = 4.9 104 / 0.7854
P = 3.85 104 Pa
2) Let's find a point with the same height on the two pistons, the pressure is the same
where subscript 1 is for the small piston and subscript 2 is for the large piston
F₁ = 
the force applied must be equal to the weight of the truck
F₁ =
F₁ = (0.05 / 1) ² 5000 9.8
F₁ = 122.5 N
Answer:
1.7 m/s²
Explanation:
d = length of the ramp = 13.5 m
v₀ = initial speed of the skateboarder = 0 m/s
v = final speed of the skateboarder = 7.37 m/s
a = acceleration
Using the equation
v² = v₀² + 2 a d
7.37² = 0² + 2 a (13.5)
a = 2.01 m/s²
θ = angle of the incline relative to ground = 29.9
a' = Component of acceleration parallel to the ground
Component of acceleration parallel to the ground is given as
a' = a Cosθ
a' = 2.01 Cos29.9
a' = 1.7 m/s²
The red box must way more. Gravitational potential energy is the product of a an objects mass times the acceleration due to gravity (which is constant on earth) times its height. Since the objects are on the same shelf they are at the same height, and since gravitational acceleration is constant as long as we stay on planet earth, then the mass is the only possible thing that could have changed. This means that the red box must weigh more than the blue box.
Answer:
delta r(x) = (delta (r)) * cos(alpha), delta r(y) = (delta(r)) * sin(alpha)
Explanation:
Well it's a simple rule I guess...