Answer:
Addition reactions with benzenes lead to the loss of aromaticity.
Benzene and its derivatives undergo a type of substitution reaction in which a hydrogen atom is replaced by a substituent, but the stable aromatic benzene ring is regenerated at the end of the mechanism.
Benzene and its derivatives tend to undergo electrophilic aromatic substitution reactions.
Explanation:
Answer:
528 liter.
Explanation:
Volume of the tank(cuboid) = l*b*h
But volume of the water = l*b*h
Where
l= length of the tank
b = width of the tank
h = the length from the bottom of the tank,
3.55 in to m,
0.09017m
Length of the water in the tank = 0.570 - 0.09017
= 0.47983 m.
Volume = 0.47983*0.710*1.55
= 0.528 m3.
1 m3 = 1000 liter.
0.528 m3 = 0.528*1000
= 528 liter
<span>1/3
The key thing to remember about an elastic collision is that it preserves both momentum and kinetic energy. For this problem I will assume the more massive particle has a mass of 1 and that the initial velocities are 1 and -1. The ratio of the masses will be represented by the less massive particle and will have the value "r"
The equation for kinetic energy is
E = 1/2MV^2.
So the energy for the system prior to collision is
0.5r(-1)^2 + 0.5(1)^2 = 0.5r + 0.5
The energy after the collision is
0.5rv^2
Setting the two equations equal to each other
0.5r + 0.5 = 0.5rv^2
r + 1 = rv^2
(r + 1)/r = v^2
sqrt((r + 1)/r) = v
The momentum prior to collision is
-1r + 1
Momentum after collision is
rv
Setting the equations equal to each other
rv = -1r + 1
rv +1r = 1
r(v+1) = 1
Now we have 2 equations with 2 unknowns.
sqrt((r + 1)/r) = v
r(v+1) = 1
Substitute the value v in the 2nd equation with sqrt((r+1)/r) and solve for r.
r(sqrt((r + 1)/r)+1) = 1
r*sqrt((r + 1)/r) + r = 1
r*sqrt(1+1/r) + r = 1
r*sqrt(1+1/r) = 1 - r
r^2*(1+1/r) = 1 - 2r + r^2
r^2 + r = 1 - 2r + r^2
r = 1 - 2r
3r = 1
r = 1/3
So the less massive particle is 1/3 the mass of the more massive particle.</span>
Answer:
Honey how can i draw you cant draw here
Explanation:
I wish i can help you