(a) The object moves with uniform velocity from A to B.
(b) The object moves with constant velocity from B to C.
(c) The object moves with increasing velocity from C to D.
<h3>
Velocity of the object from point A to B</h3>
V(A to B) = (6 - 0)/(4 - 0) = 1.5 m/s
<h3>
Velocity of the object from point B to C</h3>
V(B to C) = (6 - 6)/(11 - 4) = 0 m/s
<h3>
Velocity of the object from point C to D</h3>
V(C to D) = (7 - 6)/(12 - 11) = 1 m/s
final velocity = 1 + 1.5 m/s = 2.5 m/s
Thus, we can conclude the following;
The object moves with uniform velocity from A to B.
The object moves with constant velocity from B to C.
The object moves with increasing velocity from C to D.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1
Answer:
None, if air resistance is ignored.
Explanation:
At any instant, the projectile has vertical and horizontal components of velocity.
Vertical acceleration due to gravity affects the vertical velocity by accelerating the object toward the center of the earth, and by decreasing the upward vertical velocity..
The horizontal component of velocity makes the object travel horizontally as long as the projectile is airborne.
Thsi discussion assumes that air resistance is ignored.
Explanation:
Because the temperature and the radiation are not correlated, they're not represented as functions of each other, they're represented as independent variables thus using graph 5 you cannot figure out how one affect another
27.9 idkkkk look it up on photomath
From the theory we know that:
c = λ / T
f = 1 / T
Where:
c = 3. / m (the speed of light)
λ is the wavelengh (in meters)
T is the period (in seconds)
f is the frequency (in Hz)
We were told that:
f = 7.30 .
And we want to find out the value of λ.
c = λ / T
c = λ . 1/T
Swaping 1/T = f
c = λ . f
λ = c / f
λ = 3 . / 7.30 .
λ = 4.12 m
Response: 4.12 m = 412 nm
:-)