Since the p-value of the test is of 0.00001 < 0.01, these results have statistical significance.
<h3>What is the relation between the p-value and the conclusion of the test hypothesis?</h3>
Depends on if the p-value is less or more than the significance level:
- If it is more, the null hypothesis is not rejected, which means that the results do not have statistical significance.
- If it is less, it is rejected, which means that the results have statistical significance.
In this problem, the probability is the p-value, hence since the p-value of the test is of 0.00001 < 0.01, these results have statistical significance.
More can be learned about p-values at brainly.com/question/13873630
#SPJ1
Answer:
so to solve an inequality you just treat the inequaltity sign like an equals sign except if you multiply by negative 1 you flip the direction of the sign.
p-7/12>3/10
add 7/12 to both sides
p>7/12+3/10
p>35/60+18/60
p>53/60
so if you had to graph this on a number line you would have an open circle on 53/60 and an arrow coming off pointing to the right
Step-by-step explanation:
Answer:
n<22
Step-by-step explanation: That is the best i can do it
This might be the answer you’re looking for (−x−6)(x+9)
Answer:
![\displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%20%3D%202e%5E%7B2x%7D)
![\displaystyle \frac{d}{dx}[e^{3x}] = 3e^{3x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D%20%3D%203e%5E%7B3x%7D)
General Formulas and Concepts:
<u>Algebra I</u>
- Terms/Coefficients
- Exponential Rule [Multiplying]:

<u>Calculus</u>
Derivatives
Derivative Notation
eˣ Derivative: ![\displaystyle \frac{d}{dx}[e^x] = e^x](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5Ex%5D%20%3D%20e%5Ex)
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<u />
<u />
<u />
<u />
<u />
<u>Step 2: Differentiate</u>
<u />
<u />
- [Derivative] Product Rule:
![\displaystyle \frac{d}{dx}[e^{2x}] = \frac{d}{dx}[e^x]e^x + e^x\frac{d}{dx}[e^x]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5Ex%5De%5Ex%20%2B%20e%5Ex%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5Ex%5D)
- [Derivative] eˣ Derivative:
![\displaystyle \frac{d}{dx}[e^{2x}] = e^x \cdot e^x + e^x \cdot e^x](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%20%3D%20e%5Ex%20%5Ccdot%20e%5Ex%20%2B%20e%5Ex%20%5Ccdot%20e%5Ex)
- [Derivative] Multiply [Exponential Rule - Multiplying]:
![\displaystyle \frac{d}{dx}[e^{2x}] = e^{2x} + e^{2x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%20%3D%20e%5E%7B2x%7D%20%2B%20e%5E%7B2x%7D)
- [Derivative] Combine like terms [Addition]:
![\displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%20%3D%202e%5E%7B2x%7D)
![\displaystyle \frac{d}{dx}[e^{3x}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D)
- [Derivative] Product Rule:
![\displaystyle \frac{d}{dx}[e^{3x}] = \frac{d}{dx}[e^x]e^{2x} + e^x\frac{d}{dx}[e^{2x}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5Ex%5De%5E%7B2x%7D%20%2B%20e%5Ex%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D)
- [Derivative] eˣ Derivatives:
![\displaystyle \frac{d}{dx}[e^{3x}] = e^x(e^{2x}) + e^x(2e^{2x})](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D%20%3D%20e%5Ex%28e%5E%7B2x%7D%29%20%2B%20e%5Ex%282e%5E%7B2x%7D%29)
- [Derivative] Multiply [Exponential Rule - Multiplying]:
![\displaystyle \frac{d}{dx}[e^{3x}] = e^{3x} + 2e^{3x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D%20%3D%20e%5E%7B3x%7D%20%2B%202e%5E%7B3x%7D)
- [Derivative] Combine like terms [Addition]:
![\displaystyle \frac{d}{dx}[e^{3x}] = 3e^{3x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D%20%3D%203e%5E%7B3x%7D)
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e