Answer:
3.6 × 10²⁴ molecules
Explanation:
Step 1: Given data
Moles of methane (n): 6.0 moles
Step 2: Calculate the number of molecules of methane in 6.0 moles of methane
In order to convert moles to molecules, we need a conversion factor. In this case, we will use Avogadro's number: there are 6.02 × 10²³ molecules of methane in 1 mole of molecules of methane.
6.0 mol × 6.02 × 10²³ molecules/1 mol = 3.6 × 10²⁴ molecules
The answer is Option C (Divergent Plate Boundary)
Mapping efforts have shown that mid-ocean ridges<span> are discontinuous structures that cut at </span>right angles<span> to its length at various transform faults. They typically </span><span>demarcate the </span>boundary <span>between two tectonic plates, and are therefore called </span>divergent<span> plate </span>boundaries.
The answer is D. To put it simply, all atom wished to become stable. The only way for that is to obtain an octet structure where the outermost shell would have 8 electrons, thus being full.
Explanation:
-Filter help — delete some big unreacted, undesirable species (norit is probably from what you are sorting through, its only carbon which cleans up things)
— extract with DCM because you are probably in an aqueous phase, and some butanoate is in it
- Anhydrous sodium absorbs excess of water (dries the material)
-evaporation in the hood to clear the DCM and crystallize the product.