the zero(s) of function is x=2
Step-by-step explanation:
We need to find the zero(s) of function algebraically.
We are given:
To find the zeros we put the function equal to zero.
So, the zero(s) of function is x=2
Keywords: zero(s) of function
Learn more about zero(s) of function at:
#learnwithBrainly
Answer:
0.2
Step-by-step explanation:
<span>f(x)= 50x
</span><span>y = k x
k is variation
so k= 50
D is the right option
hope it helps
</span>
<em>θ</em> is given to be in the fourth quadrant (270° < <em>θ</em> < 360°) for which sin(<em>θ</em>) < 0 and cos(<em>θ</em>) > 0. This means
cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1 ==> sin(<em>θ</em>) = -√[1 - cos²(<em>θ</em>)] = -3/5
Now recall the double angle identity for sine:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
==> sin(2<em>θ</em>) = 2 (-3/5) (4/5) = -24/25
If Y +Y + 40 = 180 in an isosceles triangle so Y =?
Answer:
b) 70
Step-by-step explanation:
Y + Y + 40 = 180
2y + 40 = 180
2y = 180 - 40
2y = 140
y = 140/2
y = <u>7</u><u>0</u>
So, the value of Y is 70 (b)
#CMIIW ^^