1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
2 years ago
15

H

Mathematics
1 answer:
Luden [163]2 years ago
7 0
Is this just free points or is there a question
You might be interested in
In a certain Algebra 2 class of 28 students, 11 of them play basketball and 13 of them play baseball. There are 11 students who
mina [271]
80 + 28 - 13 = 95 + 11 = 106
3 0
3 years ago
What is the answer to this equation. (8+H) - 12
WITCHER [35]

Answer:

H-4

Step-by-step explanation:

Let's simplify step-by-step.

8+H−12

=8+H+−12

Combine Like Terms:

=8+H+−12

=(H)+(8+−12)

=H+−4

5 0
3 years ago
The polynomial y=x^2-2x 1 has a repeated factor. true or false?
aev [14]
Hello,

y=x^{2}-2x+1=(x-1)^2=(x-1)(x-1)\\

Repeated factor: (x-1)
5 0
3 years ago
PLEASE HELP ASAP
pantera1 [17]
The answer is 4x^2 - 7x+2
8 0
3 years ago
A county environmental agency suspects that the fish in a particular polluted lake have elevated mercury levels. To confirm that
suter [353]

Answer:

a. The 95% confidence interval for the difference between means is (0.071, 0.389).

b. There is enough evidence to support the claim that the fish in this particular polluted lake have signficantly elevated mercury levels.

c. They agree. Both conclude that the levels of mercury are significnatly higher compared to a unpolluted lake.

In the case of the confidence interval, we reach this conclusion because the lower bound is greater than 0. This indicates that, with more than 95% confidence, we can tell that the difference in mercury levels is positive.

In the case of the hypothesis test, we conclude that because the P-value indicates there is a little chance we get that samples if there is no significant difference between the mercury levels. This indicates that the values of mercury in the polluted lake are significantly higher than the unpolluted lake.

Step-by-step explanation:

The table with the data is:

Sample 1 Sample 2

0.580    0.382

0.711      0.276

0.571     0.570

0.666    0.366

0.598

The mean and standard deviation for sample 1 are:

M=\dfrac{1}{5}\sum_{i=1}^{5}(0.58+0.711+0.571+0.666+0.598)\\\\\\ M=\dfrac{3.126}{5}=0.63

s=\sqrt{\dfrac{1}{(n-1)}\sum_{i=1}^{5}(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{4}\cdot [(0.58-(0.63))^2+...+(0.598-(0.63))^2]}\\\\\\            s=\sqrt{\dfrac{1}{4}\cdot [(0.002)+(0.007)+(0.003)+(0.002)+(0.001)]}\\\\\\            s=\sqrt{\dfrac{0.015}{4}}=\sqrt{0.0037}\\\\\\s=0.061

The mean and standard deviation for sample 2 are:

M=\dfrac{1}{4}\sum_{i=1}^{4}(0.382+0.276+0.57+0.366)\\\\\\ M=\dfrac{1.594}{4}=0.4

s=\sqrt{\dfrac{1}{(n-1)}\sum_{i=1}^{4}(x_i-M)^2}\\\\\\s=\sqrt{\dfrac{1}{3}\cdot [(0.382-(0.4))^2+(0.276-(0.4))^2+(0.57-(0.4))^2+(0.366-(0.4))^2]}\\\\\\            s=\sqrt{\dfrac{1}{3}\cdot [(0)+(0.015)+(0.029)+(0.001)]}\\\\\\            s=\sqrt{\dfrac{0.046}{3}}=\sqrt{0.015}\\\\\\s=0.123

<u>Confidence interval</u>

We have to calculate a 95% confidence interval for the difference between means.

The sample 1, of size n1=5 has a mean of 0.63 and a standard deviation of 0.061.

The sample 2, of size n2=4 has a mean of 0.4 and a standard deviation of 0.123.

The difference between sample means is Md=0.23.

M_d=M_1-M_2=0.63-0.4=0.23

The estimated standard error of the difference between means is computed using the formula:

s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{0.061^2}{5}+\dfrac{0.123^2}{4}}\\\\\\s_{M_d}=\sqrt{0.001+0.004}=\sqrt{0.005}=0.07

The critical t-value for a 95% confidence interval is t=2.365.

The margin of error (MOE) can be calculated as:

MOE=t\cdot s_{M_d}=2.365 \cdot 0.07=0.159

Then, the lower and upper bounds of the confidence interval are:

LL=M_d-t \cdot s_{M_d} = 0.23-0.159=0.071\\\\UL=M_d+t \cdot s_{M_d} = 0.23+0.159=0.389

The 95% confidence interval for the difference between means is (0.071, 0.389).

<u>Hypothesis test</u>

This is a hypothesis test for the difference between populations means.

The claim is that the fish in this particular polluted lake have signficantly elevated mercury levels.

Then, the null and alternative hypothesis are:

H_0: \mu_1-\mu_2=0\\\\H_a:\mu_1-\mu_2> 0

The significance level is 0.05.

The sample 1, of size n1=5 has a mean of 0.63 and a standard deviation of 0.061.

The sample 2, of size n2=4 has a mean of 0.4 and a standard deviation of 0.123.

The difference between sample means is Md=0.23.

M_d=M_1-M_2=0.63-0.4=0.23

The estimated standard error of the difference between means is computed using the formula:

s_{M_d}=\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}=\sqrt{\dfrac{0.061^2}{5}+\dfrac{0.123^2}{4}}\\\\\\s_{M_d}=\sqrt{0.001+0.004}=\sqrt{0.005}=0.07

Then, we can calculate the t-statistic as:

t=\dfrac{M_d-(\mu_1-\mu_2)}{s_{M_d}}=\dfrac{0.23-0}{0.07}=\dfrac{0.23}{0.07}=3.42

The degrees of freedom for this test are:

df=n_1+n_2-1=5+4-2=7

This test is a right-tailed test, with 7 degrees of freedom and t=3.42, so the P-value for this test is calculated as (using a t-table):

\text{P-value}=P(t>3.42)=0.006

As the P-value (0.006) is smaller than the significance level (0.05), the effect is significant.

The null hypothesis is rejected.

There is enough evidence to support the claim that the fish in this particular polluted lake have signficantly elevated mercury levels.

<u> </u>

c. They agree. Both conclude that the levels of mercury are significnatly higher compared to a unpolluted lake.

In the case of the confidence interval, we reach this conclusion because the lower bound is greater than 0. This indicates that, with more than 95% confidence, we can tell that the difference in mercury levels is positive.

In the case of the hypothesis test, we conclude that because the P-value indicates there is a little chance we get that samples if there is no significant difference between the mercury levels. This indicates that the values of mercury in the polluted lake are significantly higher than the unpolluted lake.

7 0
3 years ago
Other questions:
  • Solution of the inequality y&gt;1.9
    13·1 answer
  • PLEASEEE HELP DUE SOON!
    5·2 answers
  • Which diagram represents the vector addition C=A+B. Which represents vector subtraction C=A-B?
    7·1 answer
  • Tia is investing $2500 that she would like to grow to $6000 in 10 years. At what annual interest rate, compounded quarterly, mus
    5·1 answer
  • Cosx=5/17. Solve for x
    12·2 answers
  • Eric conducted a survey of the cars in four parking lots and wrote the following observations:
    11·2 answers
  • 46= 4x - 6 help me ok
    12·2 answers
  • Solve the following system<br> algebraically:
    5·2 answers
  • What is 2 x 2 x 2 bob ross
    15·2 answers
  • Describe the transformation
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!