Ice cubes are made of water which has undergone freezing, which made it into ice. Both ice cubes and water have the same properties. But in this case, when ice and water are mixed, it is considered a heterogeneous mixture and not homogeneous. Why? Going back to the definition of what a heterogeneous mixture is, this mixture shows a visible difference of difference phases or substances. In the ice and water mixture, it is obviously seen that ice is solid, and water is liquid.
Answer:
a. 5.9 × 10⁻³ M/s
b. 0.012 M/s
Explanation:
Let's consider the following reaction.
2 N₂O(g) → 2 N₂(g) + O₂(g)
a.
Time (t): 12.0 s
Δn(O₂): 1.7 × 10⁻² mol
Volume (V): 0.240 L
We can find the average rate of the reaction over this time interval using the following expression.
r = Δn(O₂) / V × t
r = 1.7 × 10⁻² mol / 0.240 L × 12.0 s
r = 5.9 × 10⁻³ M/s
b. The molar ratio of N₂O to O₂ is 2:1. The rate of change of N₂O is:
5.9 × 10⁻³ mol O₂/L.s × (2 mol N₂O/1 mol O₂) = 0.012 M/s
Answer:
The correct statements that you must check are:
- The oxygen atom has a greater attraction for electrons than the hydrogen atom does (second statement).
- The electrons of the covalent bond are not shared equally between the hydrogen and oxygen atoms (fourth statement).
Explanation:
Electronegativity is the relative ability of an atom to pull the electrons in a covalent bond.
Hydrogen has an electronegativity of 2.20 and oxygen has 3.44. That means that oxygen attracts the electrons more strongly than hydrogen does (second statement).
As consequence, the electrons in the covalent bond H - O of water are not shared equally (fourth statement): the electron density will be higher around the O atoms.
Of course, this discards the statement telling that hydrogen atom attracts electrons much more strongly than the oxygen atom, and the statement telling that hydrogen and oxigen have same electronegativity.
Such difference in electron densities creates a dipole moment, so you discard the last statement (that the water dipole moment is equal to zero).
Rdaioactive decay results in the formation of a different element. Plutonium decays by emitting alpha emission to form uranium. Thermal energy is emitted as the alpha particles are absorbed and the kinetic energy is converted to heat. The amount of energy is computed by the formula;
E = mc²
E = 0.000046 × (3 ×10^8)
Energy = 4.14 ×10^13 Joules