Answer: the line Spectra of hydrogen lies between the ultra-violet, visible light and infra-red of the electro magnetic spectrum
Explanation:
Electromagnetic radiation spans an wide range of wavelengths and frequencies. This range is called the electromagnetic spectrum. The electromagnetic spectrum is generally divided into seven regions, in order of decreasing wavelength and increasing energy and frequency. The 7 regions includes; radio waves, microwaves, infrared (IR), visible light, ultraviolet (UV), X-rays and gamma rays.
lower-energy radiation, such as radio waves, is expressed as frequency while microwaves, infrared, visible and UV light are usually expressed as wavelength and finally, higher-energy radiation such as X-rays and gamma rays, is expressed in terms of energy per photon.
Therefore, hydrogen lies between the ultra-violet, visible light and infra-red region of the electro magnetic spectrum.
When in water, MgCl2 dissociates into magnesium ions and Cl- ions and NaOH into Na and OH ions. The equation is as follows:
MgCl2 = Mg2+ + 2Cl-
NaOH = Na+ + OH-
The initial concentrations are as follows:
[Mg2+] = .220(<span> 2.47x10^-4) / .220+.180 = 1.36x10^-4 M Mg2+
</span>[OH-] = .180 (3.52x10^-4) / .220+.180 = 1.58x10^-4 M OH-
In a redox chemical reaction, one species gets reduced and another gets oxidized. Manganese element is reduced in this reaction.
<h3>What is oxidized and reduced?</h3>
In a redox reaction, the increase or decrease in the oxidation number and electrons results in the reduction and oxidation of the chemical species. The oxidation and reduction occur simultaneously in a reaction.
The oxidation number of Mn in permanganate ion was +8 on the left side and decreased to +4 on the right side of the equation. Potassium permanganate is an oxidizing agent that has reduced the manganese ion of the permanganate ion.
Therefore, manganese is reduced.
Learn more about reduction and oxidation here:
brainly.com/question/2427143
#SPJ4
Answer:
The majority of the air we breathe is made up of nitrogen and oxygen, though you'll also find argon, carbon dioxide and other gases in trace amounts.
Explanation: