Answer:
The correct answer is 574.59 grams.
Explanation:
Based on the given information, the number of moles of NH₃ will be,
= 2.50 L × 0.800 mol/L
= 2 mol
The given pH of a buffer is 8.53
pH + pOH = 14.00
pOH = 14.00 - pH
pOH = 14.00 - 8.53
pOH = 5.47
The Kb of ammonia given is 1.8 * 10^-5. Now pKb = -logKb,
= -log (1.8 ×10⁻⁵)
= 5.00 - log 1.8
= 5.00 - 0.26
= 4.74
Based on Henderson equation:
pOH = pKb + log ([salt]/[base])
pOH = pKb + [NH₄⁺]/[NH₃]
5.47 = 4.74 + log ([NH₄⁺]/[NH₃])
log([NH₄⁺]/[NH₃]) = 5.47-4.74 = 0.73
[NH₄⁺]/[NH₃] = 10^0.73= 5.37
[NH₄⁺ = 5.37 × 2 mol = 10.74 mol
Now the mass of dry ammonium chloride required is,
mass of NH₄Cl = 10.74 mol × 53.5 g/mol
= 574.59 grams.
Crush the limestone... it would give more area for the acid to react
The silicon wafer contains 20.96 g of silicon.
The mole of a substance is related to its mass and molar mass by the following equation:
<h3>Mole = mass / molar mass ....... (1)</h3>
Making mass the subject of the above equation, we have
<h3>Mass = mole × molar mass ..... (2)</h3>
With the above formula (i.e equation 2), we can obtain the mass of silicon in the wafer as follow:
Mole silicon = 0.746 mole
Molar mass of silicon = 28.09 g/mol
<h3>Mass of silicon =? </h3>
Mass = mole × molar mass
Mass = 0.746 × 28.09
<h3>Mass of silicon = 20.96 g</h3>
Therefore, the mass of silicon in the wafer is 20.96 g
Learn more: brainly.com/question/24639749
Answer:
The correct answer is : 'the concatenation of NO will increase'.
Explanation:
Any change in the equilibrium is studied on the basis of Le-Chatelier's principle.
This principle states that if there is any change in the variables of the reaction, the equilibrium will shift in the direction to minimize the effect.
If the temperature is increased, so according to the Le-Chatlier's principle , the equilibrium will shift in the direction where increase in temperature occurs.

As, this is an endothermic reaction, increasing temperature will add more heat to the system which move equilibrium in the forward reaction with decrease in temperature. Hence, the equilibrium will shift in the right direction.
So, the concatenation of NO will increase.