Wernicke's area is where comprehension of speech is
Surrounding every charge (or group of charges) is a thing, called an electric field. (it is a vector thing). E. Definition: The electric field at a point. E in empty space is a vector quantity which can be measured by the following procedure: place a small test charge q at that point, measure the force on q due to all other charges.
Answer:
Explanation:
Let the time required for acceleration a₁ and deceleration a₂ be t₁ and t₂ .
Since final velocity during acceleration and initial velocity during deceleration are same
a₁ t₁ = a₂ t₂
5t₁ = 2 t₂ ------------------------------------------ ( 1 )
Distance travelled during acceleration = 1/2 a₁t₁²
= 1/2 x 5 x t₁² = 2.5 t₁²
Distance travelled during deceleration = 1/2 a₂t₂²
= 1/2 x 2 x t₂² = t₂²
Total distance travelled = 2 miles = 2 x 1760 x 3 ft = 10560
2.5 t₁² + t₂² = 10560
2.5 ( 2t₂ / 5 )² + t₂² = 10560
.4 t₂² + t₂² = 10560
1.4 t₂² = 10560
t₂ = 86.85 s
t₁ = 2t₂ / 5 = 34.75 s
t₁ + t₂ = 121.6 = 122 s
Total time taken = 122 s .
maximum velocity = a₁t₁
= 5 x 34.75 = 173.75 = 174 m/s .
Answer:
3.45×10⁻⁴mm (or 0.000345mm)
Explanation:
Use a method called dimensional analysis here. It involves a chain of conversions, so we'll need some conversions to work with.
- 1nm = 1×10⁻⁹m
- 1mm = 1×10⁻³m
- 345nm; which is given
If you knew the conversion from nanometers to millimeters then you could just do it in one step. But I don't, so I won't. Anyways, you put the conversions into fraction form like so:
And then orient them in a way where multiplying the two (or more in other instances) gives you the units you want. In this cas it's millimeters so you'll have:
(345nm)•(1×10⁻⁹m/1nm)•(1mm/1×10⁻³m)
Notice how all the units reduce except for mm. From here you just multiply across and should get 345×10⁻⁶mm which simplifies to 3.45×10⁻⁴mm.
Gamma waves have a short wavelength. The closer the wavelength (
) the higher frequency the wave is