Explanation:
13 cmHg (centimeters of mercury) is the pressure at the bottom of a column of mercury 13 cm deep. It is the equivalent of about 17.3 kPa or 2.5 psi.
Answer:
D
Explanation:
First we define our variables
V0=29.4
a=-9.8
V=0
We have to find the maximum displacement , which I will define as X
We use formula v^2=v0^2+2aX
All we do is substitute our values
0=29.4^2-19.6X
29.4^2=19.6X
X=29.4^2/19.6=44.1
Answer:
The speed of light is faster in water. The Refractive index of water is 1.3 and the refractive index of glass is 1.5. From the equation n = c/v, we know that the refractive index of a medium is inversely proportional to the velocity of light in that medium. Hence, light travels faster in water.
Answer:
Explanation:
When the spring is compressed by .80 m , restoring force by spring on block
= 130 x .80
= 104 N , acting away from wall
External force = 82 N , acting towards wall
Force of friction acting towards wall = μmg
= .4 x 4 x 9.8
= 15.68 N
Net force away from wall
= 104 -15.68 - 82
= 6.32 N
Acceleration
= 6.32 / 4
= 1.58 m / s²
It will be away from wall
Energy released by compressed spring = 1/2 k x²
= .5 x 130 x .8²
= 41.6 J
Energy lost in friction
= μmg x .8
= .4 x 4 x 9.8 x .8
= 12.544 J
Energy available to block
= 41.6 - 12.544 J
= 29 J
Kinetic energy of block = 29
1/2 x 4 x v² = 29
v = 3.8 m / s
This will b speed of block as soon as spring relaxes. (x = 0 )