Even tho one is stronger then the other... they are both alike because they are still nuclear forces.
Newton's law of conservation states that energy of an isolated system remains a constant. It can neither be created nor destroyed but can be transformed from one form to the other.
Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.
Mathematically also potential energy is represented as
Potential energy= mgh
Where m is the mass of the pendulum.
g is the acceleration due to gravity
h is the height from the bottom z the ground.
At the bottom of the swing,the height is zero, hence the potential energy is also zero.
The kinetic energy is represented mathematically as
Kinetic energy= 1/2 mv^2
Where m is the mass of the pendulum
v is the velocity of the pendulum
At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.
Also as it has been mentioned energy can neither be created nor destroyed hence the entire potential energy is converted to kinetic energy at the bottom and would be equivalent to 895 J.
Answer:
option (a)
Explanation:
the angular velocity of the carousel is same througout the motion, so the angular velocity of all the horses is same, but the linear velocity is different for different horses.
As the angular displacement of all the horses are same in the same time so the angular velocity is same.
The relation between the linear velocity and the angular velocity is given by
v = r ω
where, v is linear velocity and r be the distance between the horse and axis of rotation and ω be the angular velocity.
So, the angular velocity of Alice horse is same as the angular velocity of Bob horse.
ωA = ωB
Thus, option (a) is true.
Here is your answer
Answer :- two(2)
Explanation:
the state or quality of being efficient or able to accomplish something