Answer:
E = 1.2443*10⁶ N/C
Explanation:
R = 41.6 cm = 0.416 m
Q₁ = 8.55 μC = 8.55*10⁻⁶C
Q₀ = 4.43 μC = 4.43*10⁻⁶C
r = 17.9 cm = 0.179 m
K = 9*10⁹ N*m²/C²
Since r < R we can apply Gauss's Law as follows
E = K*Q₀ / r²
⇒ E = (9*10⁹ N*m²/C²)*(4.43*10⁻⁶C) / (0.179 m)²
⇒ E = 1.2443*10⁶ N/C
Answer:
Explanation:
Function. The mitochondrion is the site of ATP synthesis for the cell. The number of mitochondria found in a cell are therefore a good indicator of the cell's rate of metabolic activity; cells which are very metabolically active, such as hepatocytes, will have many mitochondria.
Answer:
60 grams of ice will require 30.26 calories to raise the temperature 1°C.
Explanation:
The amount of heat (Q) to raise the temperature of 60.0 g of ice by 1°C can be calculated from:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat released or absorbed by the system.
m is the mass of the ice (m = 60.0 g).
c is the specific heat capacity of ice (c = 2.108 J/g.°C).
ΔT is the temperature difference (ΔT = 1.0 °C).
∴ Q = m.c.ΔT = (60.0 g)(2.108 J/g.°C)(1.0 °C) = 126.48 J.
<em>It is known that 1.0 cal = 4.18 J.</em>
<em>∴ Q = (126.48 J)(1.0 cal / 4.18 J) = 30.26 cal.</em>
I think it might just might be e
Where x represents the number of hours working as a babysitter and y represents the number of hours working as a cashier...
5x + 6y <u><</u> 90
x + y <u>></u> 20
<u />