It is energy associated with gravity or gravitational force. (Potential<span> </span>energy<span> held by an object because of its high position compared to a lower position).</span>
The molar mass of the imaginary compound Z(AX₃)₂ is the sum of the molar mass of Z, A and X.
<h3>How do we calculate molar mass?</h3>
Molar mass of any compound will be calculated by adding the mass of each atoms present in that compound.
Given compound is Z(AX₃)₂, molar mass of the given compound will be calculated as:
Molar mass of Z(AX₃)₂ = Molar mass of Z + molar mass of 2(A) + molar mass of 6(X)
Hence molar mass of Z(AX₃)₂ is the sum of the masses of all atoms.
To know more about molar mass, visit the below link:
brainly.com/question/18983376
#SPJ1
Answer:
Oxidation state] is defined as the charge an atom might be imagined to have when electrons are counted according to an agreed-upon set of rules:
The oxidation state of a free element (uncombined element) is zero for a simple (monoatomic) ion, the oxidation state is equal to the net charge on the ion.
Hydrogen has an oxidation state of 1 and oxygen has an oxidation state of −2 when they are present in most compounds. (Exceptions to this are that hydrogen has an oxidation state of −1 in hydrides of active metals, e.g. LiH, and oxygen has an oxidation state of −1 in peroxides, e.g. H2O2 the algebraic sum of oxidation states of all atoms in a neutral molecule must be zero, while in ions the algebraic sum of the oxidation states of the constituent atoms must be equal to the charge on the ion.
The same is written in my textbook. But how am I supposed to find the ox. number of an atom, which is in compound like K2UO4?
Firstly, the chemical equation between the calcium metal and water will be:
Ca(s) + 2 H₂O(l) → Ca(OH)₂(aq) + H₂(g)
We can see from the equation the bubbles of hydrogen gas which are formed during the reaction stick to the surface of the metal and hence calcium floats on water.
The other metal that will float on the water during the reaction is magnesium which have the same chemical behavior like calcium, we can illustrate that by the chemical equation:
Mg(s) + 2 H₂O(l) → Mg(OH)₂(aq) + H₂(g)
This is a neutralization reaction since, the hydrogen ion, H+, from the HCl is neutralized by the hydroxide ion, OH-, from the KOH to form the water molecule, H2O and salt, KCl only.