Answer:
4.14 x 10²⁴ molecules CO₂
Explanation:
2 C₄H₁₀ + 13 O₂ --> 8 CO₂ + 10 H₂O
To find the number of CO₂ molecules, you need to start with 100 grams of butane (C₄H₁₀), convert to moles (using the molar mass), convert to moles of CO₂ (using coefficients from equation), then convert to molecules (using Avagadro's number). The molar mass of C₄H₁₀ is calculated using the quantity of each element (subscript) multiplied by the number on the periodic table. The ratios should be arranged in a way that allows for units to be cancelled.
4(12.011g/mol) + 10(1.008 g/mol) = 58.124 g/mol C₄H₁₀
100 grams C₄H₁₀ 1 mol C₄H₁₀ 8 mol CO₂
-------------------------- x ---------------------- x ---------------------
58.124 g 2 mol C₄H₁₀
6.022 x 10²³ molecules
x ------------------------------------ = 4.14 x 10²⁴ molecules CO₂
1 mol CO₂
Answer:
A metalloid is a substance that has both the qualities of a metal and a non metal. Metals conduct electricity and have a high melting point.The element described does not conduct electricity until temperatures are reduced therefore it is not a metal. The fact that conduction occurs when temperatures are reduced means that it is not a non metal because non metals do not conduct electricity at all. Therefore the element is a metaloid because it exhibits some properties of a metal and others of a non mental.
Explanation:
Restriction as a barrier to transformation apparently contributes to sexual isolation since horizontal transfer can encompass chromosomal DNA and plasmids. I hope my answer has come to your help. God bless and have a nice day ahead!
Answer:
a. Methanol remains the same
b. Methanol decreases
c. Methanol increases
d. Methanol remains the same
e. Methanol increases
Explanation:
Methanol is produced by the reaction of carbon monoxide and hydrogen in the presence of a catalyst as follows; 2H2+CO→CH3OH.
a) The presence or absence of a catalyst makes no difference on the equilibrium position of the system hence the methanol remains constant.
b) The amount of methanol decreases because the equilibrium position shifts towards the left and more reactants are formed since the reaction is exothermic.
c) If the volume is decreased, there will be more methanol in the system because the equilibrium position will shift towards the right hand side.
d) Addition of helium gas has no effect on the equilibrium position since it does not participate in the reaction system.
e) if more CO is added the amount of methanol increases since the equilibrium position will shift towards the right hand side.