Answer:
= 0.315
Step-by-step explanation:
hope this helps :)
Answer:
Step-by-step explanation:
it is given that Square contains a chord of of the circle equal to the radius thus from diagram

If Chord is equal to radius then triangle PQR is an equilateral Triangle
Thus 
In triangle PQO applying Pythagoras theorem




Thus length of Side of square 
Area of square
Area of Circle
Ratio of square to the circle
Answer:
C
Step-by-step explanation:
You just find the rate of change. So you would divide 30/1 which equals 30. So the equation is y=30x.
<h3>Given:</h3>
<h3>Note that:</h3>
<h3>To find:</h3>
The volume of the given cone.
<h3>Solution:</h3>


Let's solve!
Substitute the values according to the formula.


<u>Therefore</u><u>,</u><u> </u><u>the</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>cone</u><u> </u><u>is</u><u> </u><u>2863.6</u><u>8</u><u> </u><u>cubic</u><u> </u><u>feets</u><u>.</u>