Answer:
P = 1/8
Explanation:
The wave function of a particle in a one-dimensional box is given by:

Hence, the probability of finding the particle in the one-dimensional box is:


Evaluating the above integral from x₁ = 0 to x₂ = L/8 and solving it, we have:
Solving for n=4:
I hope it helps you!
To answer the question that is: "which factors affect a river's load", we have to understand that all the things mentioned are important. All these options (river's slope, streambed shape and volume of flow) affect the amount of energy that the river has to spend and the way the river spend that energy, so, it is right to mark the alternative <span>d) all of the above.</span>
The integrated rate law for a second-order reaction is given by:
![\frac{1}{[A]t} = \frac{1}{[A]0} + kt](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5BA%5Dt%7D%20%3D%20%20%20%5Cfrac%7B1%7D%7B%5BA%5D0%7D%20%2B%20kt%20)
where, [A]t= the concentration of A at time t,
[A]0= the concentration of A at time t=0
<span>k =</span> the rate constant for the reaction
<u>Given</u>: [A]0= 4 M, k = 0.0265 m–1min–1 and t = 180.0 min
Hence, ![\frac{1}{[A]t} = \frac{1}{4} + (0.0265 X 180)](https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%5BA%5Dt%7D%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%2B%20%280.0265%20X%20180%29%20)
<span> = 4.858</span>
<span><span><span>Therefore, [A]</span>t</span>= 0.2058 M.</span>
<span>
</span>
<span>Answer: C</span>oncentration of A, after 180 min, is 0.2058 M
Answer:
They could possibly make daily check ups to the research facility?
Answer:
Equation 2, because K being more reactive, exchanges position with Pb in PbNO3.
Explanation: