Answer:
2 a
element pure form cannot broken down
3 b
Chemical change chemical R×N
(R×N = reaction)
4c homogeneous solution
Yield = Yield (reaction yield): A measure of a chemical reaction's efficiency, as a ratio of moles of product to moles of reactant. Usually expressed as a percentage. % Yield = Moles of product.
Explanation:
Answer:
B
Explanation:
Solar power takes in light and turns it into a usable energy. if used in a vehicle that would take light energy and transform it into mechanical energy.
Answer: option D. the ability of a base to react with a soluble metal salt.
Justification:
NaOH is a strong base, which means that in water it will dissociate according to this reaction:
- NaOH(aq) → Na⁺ (aq) + OH⁻ (aq)
On the other hand, CuSO₄ is a soluble ionic salt which in water will dissociate into its ions according to this other reaction:
Hence, in solution, the sodium ion (Na⁺) will react with the metal salt in a double replacement reaction, where the highly reactive sodium ion (Na⁺) will substitute the Cu²⁺ in the CuSO₄ to form the sodium sulfate salt, Na₂SO₄ (water soluble), and the copper(II) hydroxide, Cu(OH)₂ (insoluble).
That is what the given reaction represents:
CuSO₄ (aq) + 2NaOH(aq) → Cu(OH)₂(s) + Na₂SO₄(aq)
↑ ↑ ↑ ↑
soluble metal salt strong base insoluble base solube salt
Answer: The osmotic pressure of a solution is 53.05 atm
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
![\pi=iMRT](https://tex.z-dn.net/?f=%5Cpi%3DiMRT)
Or,
![\pi=i\times \frac{\text{Mass of solute}\times 1000}{\text{Molar mass of solute}\times \text{Volume of solution (in mL)}}\times RT](https://tex.z-dn.net/?f=%5Cpi%3Di%5Ctimes%20%5Cfrac%7B%5Ctext%7BMass%20of%20solute%7D%5Ctimes%201000%7D%7B%5Ctext%7BMolar%20mass%20of%20solute%7D%5Ctimes%20%5Ctext%7BVolume%20of%20solution%20%28in%20mL%29%7D%7D%5Ctimes%20RT)
where,
= osmotic pressure of the solution = ?
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (methanol) = 22.3 g
Volume of solution = 321 mL
R = Gas constant = ![0.0821\text{ L.atm }mol^{-1}K^{-1}](https://tex.z-dn.net/?f=0.0821%5Ctext%7B%20L.atm%20%7Dmol%5E%7B-1%7DK%5E%7B-1%7D)
T = temperature of the solution = ![25^oC=[273+25]=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5D%3D298K)
Putting values in above equation, we get:
![\pi=1\times \frac{22.3\times 1000}{32.04\times 321}\times 0.0821\text{ L.atm }mol^{-1}K^{-1}\times 298K](https://tex.z-dn.net/?f=%5Cpi%3D1%5Ctimes%20%5Cfrac%7B22.3%5Ctimes%201000%7D%7B32.04%5Ctimes%20321%7D%5Ctimes%200.0821%5Ctext%7B%20L.atm%20%7Dmol%5E%7B-1%7DK%5E%7B-1%7D%5Ctimes%20298K)
![\pi=53.05atm](https://tex.z-dn.net/?f=%5Cpi%3D53.05atm)
Hence, the osmotic pressure of a solution is 53.05 atm