Answer: c. At equilibrium, the concentration of reactants is greater than the products
Explanation:
Equilibrium constant for a reaction is the ratio of concentration of products to the concentration of reactants each raised to the power its stoichiometric coefficients.
For the reaction:

Equilibrium constant is given as:
![K_{eq}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BN_2O_5%5D%7D%7B%5BNO_2%5D%5Ctimes%20%5BNO_3%5D%7D)
![2.1\times 10^{-20}=\frac{[N_2O_5]}{[NO_2]\times [NO_3]}](https://tex.z-dn.net/?f=2.1%5Ctimes%2010%5E%7B-20%7D%3D%5Cfrac%7B%5BN_2O_5%5D%7D%7B%5BNO_2%5D%5Ctimes%20%5BNO_3%5D%7D)
When
a) K > 1, the concentration of products is greater than the concentration of reactants
b) K < 1, the concentration of reactants is greater than the concentration of products
c) K= 1, the reaction is at equilibrium, the concentration of reactants is equal to the concentration of products
Thus as
is
which is less than 1,
the concentration of reactants is greater than the concentration of products
Answer:
Option C
Explanation:
The theory is useful as in the usual constitution of the theory the professor stated
Answer:
<h2>9 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 3 × 3
We have the final answer as
<h3>9 kg.m/s</h3>
Hope this helps you