We can store the copper sulphate solution in alumiun container, if cover on alumiun is present.
<h3>Can you store cuso4 in an aluminum container?</h3>
Aluminium is more reactive than copper so the Aluminium will displace copper sulphate from its solution by reacting with it but if there is cover on the aluminium then the alumium can't react with copper.
So we can store the copper sulphate solution in alumiun container.
Learn more about container here: brainly.com/question/11459708
Answer:
The concentration of I at equilibrium = 3.3166×10⁻² M
Explanation:
For the equilibrium reaction,
I₂ (g) ⇄ 2I (g)
The expression for Kc for the reaction is:
![K_c=\frac {\left[I_{Equilibrium} \right]^2}{\left[I_2_{Equilibrium} \right]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B%5Cleft%5BI_2_%7BEquilibrium%7D%20%5Cright%5D%7D)
Given:
= 0.10 M
Kc = 0.011
Applying in the above formula to find the equilibrium concentration of I as:
![0.011=\frac {\left[I_{Equilibrium} \right]^2}{0.10}](https://tex.z-dn.net/?f=0.011%3D%5Cfrac%20%7B%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%7D%7B0.10%7D)
So,
![\left[I_{Equilibrium} \right]^2=0.011\times 0.10](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.011%5Ctimes%200.10)
![\left[I_{Equilibrium} \right]^2=0.0011](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%5E2%3D0.0011)
![\left[I_{Equilibrium} \right]=3.3166\times 10^{-2}\ M](https://tex.z-dn.net/?f=%5Cleft%5BI_%7BEquilibrium%7D%20%5Cright%5D%3D3.3166%5Ctimes%2010%5E%7B-2%7D%5C%20M)
<u>Thus, The concentration of I at equilibrium = 3.3166×10⁻² M</u>
First find the oxidation states of the various atoms:
<span>in Cr2O2 2- Cr @ +1; In NH3 N @ +3; in CrO3 Cr @ +3, N2 N @ 0 </span>
<span>Note that N gained electrons, ie, was reduced; Cr was oxidized </span>
<span>Now there is a problem, because B has NH4+ which the problem did not, and is not balanced, showing e- in/out </span>
<span>B.NH4+ → N2 </span>
<span>Which of the following is an oxidation half-reaction? </span>
<span>A.Sn 2+ →Sn 4+ + 2e- </span>
<span>Sn lost electrons so it got oxidized</span>
Gain 1.
This is because of Chlorine's placement on the periodic table. Chlorine is a Halogen, thus being located in group 17 or 7A. This means it is one of the closest elements to being a Noble Gas or group 18/8A.
Chlorine has 7 valence electrons, and in order for it to become a Noble Gas, it needs 8. Cl- is typically the symbol used to represent this as Chlorine needs to gain an electrons instead of lose; once Chlorine gains the electron, it will be stable.
This also means that Chlorine has a high ionization energy or, in simpler terms, it would be difficult to remove an electron from Chlorine.
Hope this helps!