F₂ + 2 NaI → 2 NaF + I₂
<span>It is given that F₂ is light yellow / colorless in hydrocarbon solvent. The student combines Fluorine water with NaI in water. Then student adds pentane in the mixture of F₂ and NaI. After dissolution, solution was observed and a colorless pentane layer was seen. Alkanes are unreactive in nature. The C-H bond in alkane is difficult to break. whereas, F₂ is very reactive and reacts vigorously with alkanes in presence of light by free radical mechanism.It is given that the color of the solution is nearly colorless. F₂ when present in hydrocarbon solvent is light yellow/ colorless/ nearly colorless. Hence, F₂ is not reacting with hydrocarbon and there is no reaction taking place (No F</span>₂ is present<span>)</span>
Answer:
<em>Protons:
</em>
- Positively charged particle
- The number of these is the atomic number
- All atoms of a given element have the same number of these
<em>Neutrons: </em>
- Isotopes of a given element differ in the number of these
- The mass number is the number of these added to the number of protons
Explanation:
Protons (<em>positively charged</em>), neutrons (<em>neutral</em>) and electrons (negatively charged) are smaller than an atom and they are the main subatomic particles. The nucleus of an atom is composed of protons and neutrons, and the electrons are in the periphery at unknown pathways.
The <em>Atomic number</em> (Z) indicates the number of protons (
) in the nucleus. Every atom of an element have the <em>same atomic number</em>, thus the <em>same number of protons</em>.
The <em>mass number </em>(A) is the sum of the <em>number of protons</em> (
) <em>and neutrons</em> (N) that are present in the nucleus: <em>A= Z + N</em>
<em>Isotopes</em> are atoms of the <em>same element </em>which nucleus have the <em>same atomic number</em> (Z), and <em>different mass number (A)</em>, it means the <em>same number of protons</em> (
) and a <em>different number of neutrons</em> (N). For example, the oxygen in its natural state is a mixture of isotopes:
99.8% atoms with A= 16, Z=8, and N=8
0.037% atoms with A=17, Z=8, and N=9
0.204% atoms with A=18, Z=8, and N=10
The question is incomplete, the complete question is
Which is NOT correct for when the silver and vanadium half-cells are connected via a salt bridge and a potentiometer? Ag^+ + 1 e^- rightarrow Ag Edegree = 0.7993 V V^2+ + 2e^- right arrow V E degree =-1.125 V Ag+ is reduced V is oxidized 1.924 V V2^+ is reduced Ag is oxidized I and II III, IV, and V I, II, and III III only IV and V
Answer:
only IV and V
Explanation:
If we look at the values of reduction potential for the two species, we will discover that vanadium has a negative reduction potential indicating its tendency towards oxidation.
On the other hand, solve has a positive reduction potential indicating a tendency towards reduction.
This implies that vanadium must be oxidized and silver reduced and not the not her way ground? Hence the answer above.
Explanation:
1. Electrons surround the nucleus in defined regions called orbits.
2. The shells further away from the nucleus are larger and can hold more electrons.
3. The shells closer to the nucleus are smaller and can hold less electrons.
4. The closest shell (closest to the nucleus) can hold a maximum of two electrons.
5. Once the first shell is full, the second shell begins to fill. It can hold a maximum of eight electrons.
6. Once the second shell is full, the third shell begins to fill.
7. Once the third shell contains Eighteen electrons, the fourth shell begins to fill.
8. The arrangement of electrons in shells around the nucleus is referred to as an atom's electronic configuration.
P =mgh
You have mass, g =9.8 m/s2 and height calculate the potential energy P