Answer:
0.0344 moles and 1.93g.
Explanation:
Molarity is defined as the ratio between moles of a solute (In this case, KOH), and the volume. With molarity and volume we can solve the moles of solute. With moles of solute we can find mass of the solute as follows:
<em>Moles KOH:</em>
15.2mL = 0.0152L * (2.26mol / L) = 0.0344moles
<em>Mass KOH:</em>
0.0344 moles * (56.11g/mol) = 1.93g of KOH
Limiting reactant : O₂
Mass of N₂O₄ produced = 95.83 g
<h3>Further explanation</h3>
Given
50g nitrous oxide
50g oxygen
Reaction
2N20 + 302 - 2N204
Required
Limiting reactant
mass of N204 produced
Solution
mol N₂O :

mol O₂ :

2N₂O+3O₂⇒ 2N₂O₄
ICE method
1.136 1.5625
1.0416 1.5625 1.0416
0.0944 0 1.0416
Limiting reactant : Oxygen-O₂
Mass N₂O₄(MW=92 g/mol) :

Answer:1.
1.Balanced equation
C4H10 + 9 02 ==> 5H20 +4CO2
2. Volume of CO2 =596L
Explanation:
1.Combustion of alkane is the reaction of alkanes with Oxygen. And the general equation for the combustion is;
CxHy +( x+y/4) O2 ==> y/2 02 + xCO2
Where x and y are number of carbon and hydrogen atoms respectively.
For butane (C4H10)
x=4 and y=10
Therefore
C4H10 + 9 02 ==> 5H20 +4CO2
2. Mass of butane = 0.360kg
Molar mass of C4H10 = ( 12×4 + 1×10)
= 48 +10=58g/mol= 0.058kg/mol
Mole = mass/molar mass
Mole = 0.360/0.058= 6.2moles
From the stoichiometric equation
1mole of C4H10 will gives 4moles of CO2
Therefore
6.2moles of C4H10 will gives 4 moles of 24.8 moles of CO2
Using the ideal gas equation
PV=nRT
P= 1.0atm
V=?
n= 24.8mol.
R=0.08206atmL/molK
T=20+273=293
V= 24.8 × 0.08206 × 293
V= 596L
Therefore the volume of CO2 produced is 596L
Answer:
if you mix any halogen with any alkali then ionic salt will be formed and also this will cause an exothermic reaction in which heat is getting released
<span>During aerobic respiration, electrons travel downhill in which sequence?
</span><span>B) food → NADH → electron transport chain → oxygen</span>