An electron is found whizzing around the nucleus, so in subatomic particles.
Answer:
The specific heat of the alloy 
Explanation:
Mass of an alloy
= 25 gm
Initial temperature
= 100°c = 373 K
Mass of water
= 90 gm
Initial temperature of water
= 25.32 °c = 298.32 K
Final temperature
= 27.18 °c = 300.18 K
From energy balance equation
Heat lost by alloy = Heat gain by water
[
-
] =
(
-
)
25 ×
× ( 373 - 300.18 ) = 90 × 4.2 (300.18 - 298.32)

This is the specific heat of the alloy.
Answer: 11.0 g of calcium will react with 10.0 grams of water.
Explanation:
To calculate the moles, we use the equation:
moles of
The balanced chemical equation is:
According to stoichiometry :
2 moles of
require = 1 mole of
Thus 0.55 moles of
require=
of
Mass of
Thus 11.0 g of calcium will react with 10.0 grams of water.
Answer:
The sun's gravity pulls on the earth, and the earth pulls back on the sun at the same time. This is why the center of the solar system is not the center of the sun. As one gravitational body gets bigger than the other, it circles closer to the center of the system (shown in red).
Explanation:
hope this helps...
Answer:
The answer to your question is 0.41 moles
Explanation:
Data
moles of NaCl = ?
mass of NaCl = 24 g
Process
To solve this problem just calculate the molar mass of NaCl, and remember that the molar mass of any substance equals to 1 mol.
1.- Calculate the molar mass
NaCl = 23 + 35.5 = 58.5 g
2.- Use proportions and cross multiplication
58.5 g of NaCl ------------------- 1 mol
24.0 g ------------------- x
x = (24 x 1) / 58.5
x = 0.41 moles