Answer:
D
Step-by-step explanation:
D is the correct answer
Answer: D
Step-by-step explanation:
Consider the first equation. Subtract 3x from both sides.
y−3x=−2
Consider the second equation. Subtract x from both sides.
y−2−x=0
Add 2 to both sides. Anything plus zero gives itself.
y−x=2
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
y−3x=−2,y−x=2
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
y−3x=−2
Add 3x to both sides of the equation.
y=3x−2
Substitute 3x−2 for y in the other equation, y−x=2.
3x−2−x=2
Add 3x to −x.
2x−2=2
Add 2 to both sides of the equation.
2x=4
Divide both sides by 2.
x=2
Substitute 2 for x in y=3x−2. Because the resulting equation contains only one variable, you can solve for y directly.
y=3×2−2
Multiply 3 times 2.
y=6−2
Add −2 to 6.
y=4
The system is now solved.
y=4,x=2
Answer:
1)1/3
2)3
Step-by-step explanation:
rise over run then reduce
Answer: 
Step-by-step explanation:
Properties of logarithm:

Consider,
![2\log x-\log y+2 \log z\\\\ =\log x^2-\log y+\log z^2\ \ \ \ \text{[By (i)]}\\\\= \log x^2+\log z^2-\log y\\\\=\log(x^2z^2)-\log y\ \ \ \ [\text{By } (ii) ]\\\\=\log(\dfrac{x^2z^2}{y}) \ \ \ \ [\text{By (iii)}]](https://tex.z-dn.net/?f=2%5Clog%20x-%5Clog%20y%2B2%20%5Clog%20z%5C%5C%5C%5C%20%3D%5Clog%20x%5E2-%5Clog%20y%2B%5Clog%20z%5E2%5C%20%5C%20%5C%20%5C%20%5Ctext%7B%5BBy%20%28i%29%5D%7D%5C%5C%5C%5C%3D%20%5Clog%20x%5E2%2B%5Clog%20z%5E2-%5Clog%20y%5C%5C%5C%5C%3D%5Clog%28x%5E2z%5E2%29-%5Clog%20y%5C%20%5C%20%5C%20%5C%20%5B%5Ctext%7BBy%20%7D%20%28ii%29%20%5D%5C%5C%5C%5C%3D%5Clog%28%5Cdfrac%7Bx%5E2z%5E2%7D%7By%7D%29%20%20%20%20%5C%20%5C%20%5C%20%5C%20%5B%5Ctext%7BBy%20%28iii%29%7D%5D)