Impulse = change in momentum
The answer is 0.
Formula:
F = ma
F: force (N) m: mass (kg) a: acceleration (m/s^2)
Solution:
F = ma
F = 20 × 10
= 200N
Answer:
A. when the mass has a displacement of zero
Explanation:
The velocity of a mass on a spring can be calculated by using the law of conservation of energy. In fact, the total energy of the mass-spring system is equal to the sum of the elastic potential energy (U) of the spring and the kinetic energy (K) of the mass:

where
k is the spring constant
x is the displacement of the mass with respect to the equilibrium position of the spring
m is the mass
v is the velocity of the mass
Since the total energy E must remain constant, we can notice the following:
- When the displacement is zero (x=0), the velocity must be maximum, because U=0 so K is maximum
- When the displacement is maximum, the velocity must be minimum (zero), because U is maximum and K=0
Based on these observations, we can conclude that the velocity of the mass is at its maximum value when the displacement is zero, so the correct option is A.
Answer:
v = 45.37 m/s
Explanation:
Given,
angle of inclination = 8.0°
Vertical height, H = 105 m
Initial K.E. = 0 J
Initial P.E. = m g H
Final PE = 0 J
Final KE = 
Using Conservation of energy




v = 45.37 m/s
Hence, speed of the skier at the bottom is equal to v = 45.37 m/s
Answer:
Explanation:
27dB = 2.7 B
So I / I₀ = 10⁻²°⁷ , I₀ is intensity of main sound and I is intensity after reduction.
= 1.99 X 10⁻³
So intensity will reduce by 1.99 X 10⁻³ .