Answer:
6957.04N
Explanation:
Using
vf2=vi2+2ad
But vf = 0 .
So convert 50km/hr to m/s, and you need to convert 61 cmto m
(50km/hr)*(1hr/3600s)*(1000m/km) = 13.9m/s
61cm * (1m/100cm) = .61m
So n
0 = (13.9m/s)^2 + 2a(.61m)
a = 158.11m/s^2
So
using F = ma
F = 44kg(158.11m/s^2) = 6957.04N
The change in the internal energy of the ideal gas is determined as -28 J.
<h3>
Work done on the gas</h3>
The work done on the ideal gas is calculated as follows;
w = -PΔV
w = -1.5 x 10⁵(0.0006 - 0.0002)
w = -60 J
<h3>Change in the internal energy of the gas</h3>
ΔU = w + q
ΔU = -60J + 32 J
ΔU = -28 J
Thus, the change in the internal energy of the ideal gas is determined as -28 J.
Learn more about internal energy here: brainly.com/question/23876012
#SPJ1
Answer:
V=21.0211m/s
Explanation:
Use V=vi+at
So, V=17.46m/s+(1.49m/)(2.39s)= 21.0211m/s
Remember that the total
velocity of the motion is the vector sum of the velocity you would have in
still water and the stream. Always place the vectors carefully to be able to
come up with an accurate sum vector.
<span> </span>
The answer is A ..........