Answer:she should consider the time on how long it would take to move it and where she will move it
Explanation:
hope this helps
Answer: v = 3.57×10^6 m/s; R = 4.42×10^-3m; T = 7.78×10^-9 s
Explanation:
Magnetic force(B) = 4.60×10^-3 T
Electric force(E) = 1.64×10^4 V/m
Both forces having equal magnitude ;
Magnetic force = electric force
qvB = qE
vB = E
v = (1.64×10^4) ÷ (4.60×10^-3)
v = 3.57×10^6 m/s
2.) Assume no electric field
qvB = ma
Where a = v^2 ÷ r
R = radius
a = acceleration
v = velocity
qvB = m(v^2 ÷ R)
R = (m×v) ÷ (|q|×B)
q=1.6×10^-19C
m = 9.11×10^-31kg
R = (9.11×10^-31 * 3.57×10^6) ÷ (1.6×10^-19 * 4.6×10^-3)
R = 32.5227×10^-25 ÷ 7.36×10^-22
R = 4.42×10^-3m
3.) period(T)
T = (2*pi*R) ÷ v
T = (2* 4.42×10^-3 * 3.142) ÷ (3.57×10^6)
T = (27.775×10^-3) ÷(3.57×10^6)
T = 7.78×10^-9 s
Answer:
a) 323.4J
b) 0J
c) -323.4J
Explanation:
a) W=Fd
F=ma
solve for acc. using kinematics
v^2=vo^2+2a(x)
8.41=2a(12)
4.205=a(12)
0.35=a
F=(77)(0.35)
F=26.95N
W=26.95*12...... W=323.4J
b) No acceleration, thus no force, thus no work!
c) W=Fd
F=ma
find acc. using kinematics: v^2=vo^2+2a(x)
0=(2.9^2)+2a(12)
0=8.41+2a(12)
-8.41=2a(12)
-4.205=a(12)
-0.35=a
F=(77)(-0.35)
F=-26.95N
W=(-26.95)(12)
W=-323.4J
Yes, work can be negative!