Answer:
Explanation:
Threshold frequency = 4.17 x 10¹⁴ Hz .
minimum energy required = hν where h is plank's constant and ν is frequency .
E = 6.6 x 10⁻³⁴ x 4.17 x 10¹⁴
= 27.52 x 10⁻²⁰ J .
wavelength of radiation falling = 245 x 10⁻⁹ m
Energy of this radiation = hc / λ
c is velocity of light and λ is wavelength of radiation .
= 6.6 x 10⁻³⁴ x 3 x 10⁸ / 245 x 10⁻⁹
= .08081 x 10⁻¹⁷ J
= 80.81 x 10⁻²⁰ J
kinetic energy of electrons ejected = energy of falling radiation - threshold energy
= 80.81 x 10⁻²⁰ - 27.52 x 10⁻²⁰
= 53.29 x 10⁻²⁰ J .
Answer:
Two identical spheres are released from a device at time t = 0 from the same ... Sphere A has no initial velocity and falls straight down. ... (b) On the axes below, sketch and label a graph of the horizontal component of the velocity of sphere A and of sphere B as a function of time. ... Which ball has the greater vertical velocity
Explanation:
The de Broglie wavelength
m
We know that
de Broglie wavelength =
m
<h3>
What is de Broglie wavelength?</h3>
According to the de Broglie equation, matter can behave like waves, much like how light and radiation do, which are both waves and particles. A beam of electrons can be diffracted just like a beam of light, according to the equation. The de Broglie equation essentially clarifies the notion of matter having a wavelength.
Therefore, whether a particle is tiny or macroscopic, it will have a wavelength when examined.
The wave nature of matter can be seen or observed in the case of macroscopic objects.
To learn more about de Broglie wavelength with the given link
brainly.com/question/17295250
#SPJ4
The process is called respiration. There are two types of respiration aerobic and anaerobic. The one which uses oxygen is aerobic respiration.
Answer:
Rate = vmax k3/k2+k3
Explanation:
The rate of reaction when the enzyme is saturated with substrate is the maximum rate of reaction, is referred to as Vmax.
This is usually expressed as the Km ie. Michaelis constant of the enzyme, an inverse measure of affinity. For practical purposes, Km is the concentration of substrate which permits the enzyme to achieve half Vmax.
Please kindly check attachment for the step by step solution of the given problem.