<span>The rate of conductivity is different among different substances, like aluminum, steel, and copper. Aluminum conducts heat the fastest at 910 j/kgaac. Steel is next and conducts heat at 450 j/kgaac. Copper conducts heat the slowest at 390 j/kgaac.</span>
Answer:
Not necessarily
Explanation:
Rain needs some mechanism such as instability of vertical air movement.
<span>When water freezes to form ice, its volume expands. However, we know from conservation of mass that the mass of the ice is the same as the mass of the water. Since density is defined fundamentally as mass / volume, and we have an expanding volume at a constant mass, the denominator of the equation grows, and thus the density of ice is lower than that of liquid water.</span>
The faster car behind is catching up/closing the gap/gaining on
the slow truck in front at the rate of (90 - 50) = 40 km/hr.
At that rate, it takes (100 m) / (40,000 m/hr) = 1/400 of an hour
to reach the truck.
(1/400 hour) x (3,600 seconds/hour) = 3600/400 = <em>9 seconds</em>, exactly
Answer:
L2 = 1.1994 m
the length of the pendulum rod when the temperature drops to 0.0°C is 1.1994 m
Explanation:
Given;
Initial length L1 = 1.2m
Initial temperature T1 = 27°C
Final temperature T2 = 0.0°C
Linear expansion coefficient of brass x = 1.9 × 10^-5 /°C
The change i length ∆L;
∆L = L2 - L1
L2 = L1 + ∆L ...........1
∆L = xL1(∆T)
∆L = xL1(T2 - T1) ......2
Substituting the given values into equation 2;
∆L = 1.9 × 10^-5 /°C × 1.2m × (0 - 27)
∆L = 1.9 × 10^-5 /°C × 1.2m × (- 27)
∆L = -6.156 × 10^-4 m
From equation 1;
L2 = L1 + ∆L
Substituting the values;
L2 = 1.2 m + (- 6.156 × 10^-4 m)
L2 = 1.2 m - 6.156 × 10^-4 m
L2 = 1.1993844 m
L2 = 1.1994 m
the length of the pendulum rod when the temperature drops to 0.0°C is 1.1994 m