1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eduardwww [97]
3 years ago
11

You know that you sound better when you sing in the shower. This has to do with the amplification of frequencies that correspond

to the standing-wave resonances of the shower enclosure. A shower enclosure is created by adding glass doors and tile walls to a standard bathtub, so the enclosure has the dimensions of a standard tub, 0.75m wide and 1.5m long. Standing sound waves can be set up along either axis of the enclosure. What are the lowest two frequencies that correspond to resonances on each axis of the shower? These frequencies will be especially amplified. Assume a sound speed of 343 m/s.A) What are the lowest two frequencies that correspond to resonances on the short axis?B) What are the lowest two frequencies that correspond to resonances on the longer axis?
Physics
1 answer:
Elena L [17]3 years ago
3 0

Answer:

Explanation:

For first overtone

Standing waves will be formed lengthwise and breadth-wise in the enclosures  having dimension of .75m  x 1.5 m

A ) For the formation of lowest two frequencies formed by standing waves along the breadth  , fundamental note and first overtone may be considered.  

For fundamental note ,  

the condition is  

wave length λ = 2L = 2 x 0.75 m  

λ = 1.5 m  

frequency n = v / λ

= 343 / 1.5  

= 229  Hz approx

For first overtone

λ = L = 0.75m

frequency n = v / λ

n = 343 / 0.75  

= 457 Hz approx

B)

For the formation of lowest two frequencies formed by standing waves along the length , fundamental note and first overtone may be considered.  

For fundamental note ,  

the condition is  

wave length λ = 2L = 2 x 1.5 m  

λ = 3 m  

frequency n = v / λ

= 343 / 3  

= 114 Hz approx

frequency n = v / λ

n = 343 / 1.5  

= 229 Hz approx

You might be interested in
The planet Jupiter has an acceleration due to gravity that is approximately 2.4 times as much as the earth (23.2 m s2 ). Which o
kumpel [21]

On Jupiter, C. your weight would increase by a factor of 2.4 . Weight is a product of mass and gravity. Mass does not change dependent upon location.

6 0
3 years ago
Read 2 more answers
What happens to the atomic number of an atom when the number of neutrons in the nucleus of that atom increases? a It decreases b
kupik [55]

Answer:

It remains the same

Explanation:

It remains the same. This is because the number of protons doesn't change and the number of protons determines the atomic number.

8 0
2 years ago
A 388 Hz tuning fork is resonating in a closed tube on a warm day when the speed of sound is 346 m/s. What is the length of the
Marizza181 [45]

Answer:

A

Explanation:

because u are subtracting if this is from flvs that is what i did and it was right

5 0
3 years ago
Read 2 more answers
what is the value of the constant for a second order reaction if the reactant concentration drops from .657 M to ,0981 M in 17 s
yaroslaw [1]

Answer : The value of the constant for a second order reaction is, 0.51M^{-1}s^{-1}

Explanation :

The expression used for second order kinetics is:

kt=\frac{1}{[A_t]}-\frac{1}{[A_o]}

where,

k = rate constant = ?

t = time = 17s

[A_t] = final concentration = 0.0981 M

[A_o] = initial concentration = 0.657 M

Now put all the given values in the above expression, we get:

k\times 17s=\frac{1}{0.0981M}-\frac{1}{0.657M}

k=0.51M^{-1}s^{-1}

Therefore, the value of the constant for a second order reaction is, 0.51M^{-1}s^{-1}

6 0
3 years ago
How to solve number 10
Vinil7 [7]

The 'formulas' to use are just the definitions of 'power' and 'work':

Power = (work done) / (time to do the work)

and  

Work = (force) x (distance) .

Combine these into one. Take the definition of 'Work', and write it in place of 'work' in the definition of power.

Power = (force x distance) / (time)

From the sheet, we know the power, the distance, and the time.  So we can use this one formula to find the force.

Power = (force x distance) / (time)

Multiply each side by (time):  (Power) x (time) = (force) x (distance)

Divide each side by (distance): Force = (power x time) / (distance).

Look how neat, clean, and simple that is !

Force = (13.3 watts) x (3 seconds) / (4 meters)

Force = (13.3 x 3 / 4) (watt-seconds / meter)

Force = 39.9/4 (joules/meter)

<em>Force = 9.975 Newtons</em>

Is that awesome or what !

6 0
3 years ago
Other questions:
  • Suppose two vectors have unequal magnitudes. can their sum be zero? explain
    7·1 answer
  • If you double the dimensions of a cube what happens to the volume
    11·1 answer
  • An ultrasound unit is being used to measure a patient's heartbeat by combining the emitted 2.0 MHz signal with the sound waves r
    10·1 answer
  • Suppose a ball with mass M hangs vertically from a spring with stiffness k and relaxed length L0. At what length Leq will the ba
    12·1 answer
  • Que es el periodo de un pendulo
    5·2 answers
  • Which statements describe the Gironde ecosystem
    9·1 answer
  • PLEASE HELP WILL GIVE BRAINIEST!!!!!!
    7·1 answer
  • In your own words, describe how matter is identified.
    8·2 answers
  • 3. What is the weight of a 462-kg bar?
    10·1 answer
  • A A load of 1000 N can be lifted by applying
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!