1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Eduardwww [97]
3 years ago
11

You know that you sound better when you sing in the shower. This has to do with the amplification of frequencies that correspond

to the standing-wave resonances of the shower enclosure. A shower enclosure is created by adding glass doors and tile walls to a standard bathtub, so the enclosure has the dimensions of a standard tub, 0.75m wide and 1.5m long. Standing sound waves can be set up along either axis of the enclosure. What are the lowest two frequencies that correspond to resonances on each axis of the shower? These frequencies will be especially amplified. Assume a sound speed of 343 m/s.A) What are the lowest two frequencies that correspond to resonances on the short axis?B) What are the lowest two frequencies that correspond to resonances on the longer axis?
Physics
1 answer:
Elena L [17]3 years ago
3 0

Answer:

Explanation:

For first overtone

Standing waves will be formed lengthwise and breadth-wise in the enclosures  having dimension of .75m  x 1.5 m

A ) For the formation of lowest two frequencies formed by standing waves along the breadth  , fundamental note and first overtone may be considered.  

For fundamental note ,  

the condition is  

wave length λ = 2L = 2 x 0.75 m  

λ = 1.5 m  

frequency n = v / λ

= 343 / 1.5  

= 229  Hz approx

For first overtone

λ = L = 0.75m

frequency n = v / λ

n = 343 / 0.75  

= 457 Hz approx

B)

For the formation of lowest two frequencies formed by standing waves along the length , fundamental note and first overtone may be considered.  

For fundamental note ,  

the condition is  

wave length λ = 2L = 2 x 1.5 m  

λ = 3 m  

frequency n = v / λ

= 343 / 3  

= 114 Hz approx

frequency n = v / λ

n = 343 / 1.5  

= 229 Hz approx

You might be interested in
Consider the four quantum numbers of an electron in an atom, n, l, ml, and ms. The energy of an electron in an isolated atom dep
Effectus [21]

Answer:

The energy of an electron in an isolated atom depends on b. n only.

Explanation:

The quantum number n, known as the principal quantum number represents the relative overall energy of each orbital.

The sets of orbitals with the same n value are often referred to as an electron shell, in an isolated atom all electrons in a subshell have exactly the same level of energy.

The principal quantum number comes from the solution of the Schrödinger wave equation, which describes energy in eigenstates E_n, and for the case of an hydrogen atom we have:

E_n=-\cfrac{13.6}{n^2}\, eV

Thus for each value of n we can describe the orbital and the energy corresponding to each electron on such orbital.

6 0
3 years ago
How do you do this? Plz help answer
Contact [7]

Answer: Really

Explanation:

Just look it up for this page and maybe you will find an anwser sheet.

7 0
3 years ago
What is the Electromagnetic Spectrum? in your own words
Inessa05 [86]
The electromagnetic spectrum is the system of frequencies that show electromagnetic radiation, respective wavelengths, and photon energies. Some examples of frequencies found on the electromagnetic spectrum are radio waves, microwaves, infrared, optical, ultraviolet, X-rays, and gamma-rays.
5 0
3 years ago
The coefficient of the restitution of an object is defined as the ratio of its outgoing to incoming speed when the object collid
IgorLugansk [536]

Answer:

48.16 %

Explanation:

coefficient of restitution = 0.72

let the incoming speed be = u

let the outgoing speed be = v

kinetic energy = 0.5 x mass x x velocity^{2}

  • incoming kinetic energy = 0.5 x m x x u^{2}

     

  •  coefficient of restitution =\frac{v}{u}

       0.72 =\frac{v}{u}

       v = 0.72u

        therefore the outgoing kinetic energy = 0.5 x m x (0.72u)^{2}

        outgoing kinetic energy = 0.5 x m x 0.5184 x u^{2}

        outgoing kinetic energy = 0.5184 (0.5 x m x x u^{2})

recall that 0.5 x m x x u^{2} is our incoming kinetic energy, therefore

outgoing kinetic energy = 0.5184 x (incoming kinetic energy)

from the above we can see that the outgoing kinetic energy is 51.84 % of the incoming kinetic energy.

The energy lost would be 100 - 51.84 = 48.16 %

5 0
3 years ago
A student, standing on a scale in an elevator at rest, sees that his weight is 840 N. As the elevator rises, his weight increase
ololo11 [35]

As per FBD while its accelerating upwards

we can say that

F_n - mg = ma

here normal force is given as

F_n = 1050 N

W = 840 N

now mass is given as

m(9.8) = 840

m = 85.7 kg

now we will have

1050 - 840 = 85.7 \times a

a = 2.45 m/s^2

Now while accelerating downwards we can say by FBD

mg - F_n = ma

again plug in all values

840 - 588 = 85.7 \times a

a = 2.94 m/s^2

5 0
4 years ago
Other questions:
  • Write a simple rule that will tell a person how many water molecule will be lost while putting monosaccharides together to form
    13·1 answer
  • How much work is required to lift an object with a mass of 5.0 kilograms to a height of 3.5 meters?
    15·2 answers
  • ๒гคเภɭץ ๓๏๔ร ςคภ รยςк ค ๔เςк ๒єςคยรє คɭɭ Շђєץ ๔๏ เร รՇєคɭ ק๏เภՇร Ŧг๏๓ ץ๏ย คภ๔ ץ๏ย ςคภՇ ๔๏ ภ๏Շђเภﻮ ค๒๏ยՇ เՇ
    11·1 answer
  • Which hormone regulates the amount of glucose in the blood ?
    9·2 answers
  • A 35.0-cm-diameter circular loop is rotated in a uniform electric field until the position of maximum electric flux is found. Th
    5·1 answer
  • A Canyon ball is fired from the ground level in angle of 35 from the ground at a speed of 150 m/s ignore air resistance calculat
    10·1 answer
  • Which choice shows the correct sequence of features formed by continued wave erosion?
    8·1 answer
  • A 0.413 kg block requires 1.09 N
    12·1 answer
  • A copper atom has an atomic number of 29 and an atomic mass of 64. What
    8·1 answer
  • How would the period of a planet depend on its orbital distance from a star? in this comparison,
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!