There is no acceleration of g in the x direction because the gravitational acceleration points downward. Also, on most studies we ignore the tidal forces since we are dealing with small bodies compared to the size of the earth.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer:
The resolution of an analog-to-digital converter is 24.41 mV
Explanation:
Resolution of an analog-to-digital = (analogue signal input range)/2ⁿ
where;
n is the number or length of bit, and in this question it is given as 12
Also, the analogue signal input range is 100V
Resolution of an analog-to-digital = 100V/2¹²
2¹² = 4096
Resolution of an analog-to-digital = 100V/4096
Resolution of an analog-to-digital = 0.02441 V = 24.41 mV
Therefore, the resolution of an analog-to-digital converter is 24.41 mV
<span>Transformed into potential energy</span>
Apply the law of conservation of momentum for this situation. The law states that the momentum of a system is constant (in absence of external forces acting on it).
The 'system' in this case are the two skaters. There is no external force on the skaters. Suppose the skaters are initially standing still. The momentum in the system is 0. This value will need to remain constant, even after the mutual push (which is a set of forces from <em>inside</em> the system). So we know that
(total momentum before) = (total momentum after)
Indexing the masses and velocities by the first letter of the skaters' names:

From the last row, you can see that the skaters will have momentum of same magnitude but opposite direction, after the push off. That answers the first question: neither will have a greater momentum (both will have one of same magnitude).
Since Ricardo is heavier, from the above equality it follows that

In words, Paula has the greater speed, after the push-off.