Answer: The time required for the impluse passing through each other is approximately 0.18seconds
Explanation:
Given:
Length,L = 50m
M/L = 0.020kg/m
FA = 5.7×10^2N
FB = 2.5×10^2N
The sum of distance travelled by each pulse must be 50m since each pulse started from opposite ends.
Ca(t) + CB(t) = 50
Where CA and CB are the velocities of the wire A and B
t = 50/ (CA + CB)
But C = Sqrt(FL/M)
Substituting gives:
t = 50/ (Sqrt( FAL/M) + Sqrt(FBL/M))
t = 50/(Sqrt 5.7×10^2/0.02) + (Sqrt(2.5×10^2/0.02))
t = 50 / (168.62 + 111.83)
t = 50/280.15
t = 0.18 seconds
The answer is the last option "Respiration"
Answer:
Here's the equation for net force: F = ma. The work done on the plane, which becomes its kinetic energy, equals the following: Net force F equals mass times acceleration. Assume that you're pushing in the same direction that the plane is going; in this case, cos 0 degrees = 1, so.
Explanation:
In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acceleration, the body maintains this kinetic energy unless its speed changes
Hope this help also looking it up helps ;)
Answer:
2Ω
Explanation:
If a 18Ω resistance is cut into three equal parts each of the resistance will be 18Ω/3 = 6Ω
Equivalent ratio in parallel is expressed as:
1/R = 1/6 + 1/6 + 1/6
1/R = 3/6
Cross multiply
3R = 6
R = 6/3
R = 2Ω
Hence the required equivalent resistance is 2Ω