Answer:

Explanation:
Given that,
The current in the loop, I = 2 A
The radius of the loop, r = 0.4 m
We need to find the magnetic field at a distance 0.09 m along the axis and above the center of the loop. The formula for the magnetic field at some distance is given as follows :

Put all the values,

So, the required magnetic field is equal to
.
Answer:
4.80 seconds
Explanation:
The velocity of sound is obtained from;
V= 2d/t
Where;
V= velocity of sound = 329.2 ms-1
d= distance from the wall = 790.5 m
t= time = the unknown
t= 2d/V
t= 2 × 790.5/ 329.2
t= 4.80 seconds
Answer:
both kinetic energy and potential energy
So, the work was done by that hot air-balloon is <u>30,000 J or 30 kJ</u>.
<h3>Introduction</h3>
Hi ! In this question, I will help you. <u>Work is the amount of force exerted to cause an object to move a certain distance from its starting point</u>. In physics, the amount of work will be proportional to the increase in force and increase in displacement. Amount of work can be calculated by this equation :

With the following condition :
- W = work (J)
- F = force (N)
- s = shift or displacement (m)
Now, the s (displacement) can be written as ∆h (altitude change) because the object move to vertical line. The formula can also be changed to:

With the following condition :
- W = work (J)
- F = force (N)
= change of altitude (m)
If an object has mass, then the object will also be affected by gravity. Always remember that F = m × g. So that :


With the following condition :
- W = work (J)
- m = mass of the object (kg)
- g = acceleration of the gravity (m/s²)
= change of altitude (m)
<h3>Problem Solving</h3>
We know that :
- F = force = 100 N
= change of altitude 300 m
What was asked :
Step by step :



<h3>Conclusion</h3>
So, the work was done by that hot air-balloon is 30,000 J or 30 kJ.
<h3>See More :</h3>