Answer:
The value is 
Explanation:
From the question we are told that
The velocity which the rover is suppose to land with is
The mass of the rover and the parachute is
The drag coefficient is
The atmospheric density of Earth is 
The acceleration due to gravity in Mars is 
Generally the Mars atmosphere density is mathematically represented as

=> 
=> 
Generally the drag force on the rover and the parachute is mathematically represented as

=>
=>
Gnerally this drag force is mathematically represented as

Here A is the frontal area
So

=> 
=> 
Being made mostly of gas is NOT a
characteristic of an inner planet. The correct answer between all the choices
given is the last choice or letter D. I am hoping that this answer has
satisfied your query and it will be able to help you in your endeavor, and if
you would like, feel free to ask another question.
Answer:

Explanation:
In order to solve this problem, we can do an analysis of the energies involved in the system. Basically the addition of the initial potential energy of the spring and the kinetic energy of the mass should be the same as the addition of the final potential energy of the spring and the kinetic energy of the block. So we get the following equation:

In this case, since the block is moving from rest, the initial kinetic energy is zero. When the block loses contact with the spring, the final potential energy of the spring will be zero, so the equation simplifies to:

The initial potential energy of the spring is given by the equation:

the Kinetic energy of the block is then given by the equation:

so we can now set them both equal to each other, so we get:

This new equation can be simplified if we multiplied both sides of the equation by a 2, so we get:

so now we can solve this for the final velocity, so we get:
