Answer:
1) R1 + ((R2 × R3)/(R2 + R3))
2) 0.5 A
3) 3.6 V
Explanation:
1) We can see that resistors R2 and R3 are in parallel.
Formula for sum of parallel resistors; 1/Rt = 1/R2 + 1/R3
Making Rt the subject gives;
Rt = (R2 × R3)/(R2 + R3)
Now, Resistor R1 is in series with this sum of R2 and R3. Thus;
Total resistance of circuit = R1 + ((R2 × R3)/(R2 + R3))
2) R_total = R1 + ((R2 × R3)/(R2 + R3))
We are given;
R1 = 7.2 Ω
R2 = 8 Ω
R3 = 12 Ω
R_total = 7.2 + ((8 × 12)/(8 + 12))
R_total = 7.2 + 4.8
R_total = 12 Ω
Formula for current is;
I = V/R
I = 6/12
I = 0.5 A
3) since current through the circuit is 0.5 and R1 is 7.2 Ω.
Thus, potential difference through R1 is;
V = IR = 0.5 × 7.2 = 3.6 V
Answer:
An object with 0 acceleration is accelerating in a direction that is opposite to a stated positive direction.
Explanation:
Acceleration is not always based on speeding up or slowing down (a constant speed is no acceleration at all), it's also based on direction. If you state that an object is positively accelerating when you throw it upwards, then it's negatively accelerating when it's falling even though it's velocity is increasing.
The relationship between speed of a wave w, frequency f and wavelength

is

For the wave of our problem,

and f=60 Hz, so its speed is
Answer:
a
Explanation:
<u>In order to maintain speed, a moving object or person must move at a constant velocity</u>. Accelerating will increase the speed while decelerating will reduce the speed.
Hence, for Bolt to be able to maintain the top speed for a few seconds, he needs to move at a constant velocity.
The correct option is a.