<h2>
<em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em><em><u>S</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em></h2>
<em>1) The relationship in between the electrical energy carriesd by the transmission wires and the amount of the heat loss in it is due to the reason that when the electricity is flown through the wires there are some resistance found in these wires which creates a disturbance in the efficient flow of electricty.Also we know that current have an heating effect when it is in motion as due to if a large amount or magnitude of electricity is flown through the transmission wires it will carry a larger heat effected and also due to the resistance is provided by the wires and so the process of heat loss takes place.</em>
<em>2)It is important to minimize current in transmission wires due to minimize the heat loss and resistance on flowing electric current to make the system more efficient </em>
<em><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u></em><em> 3)Given Resistance = 250 ohms </em>
<em>Electric potential = 150 volts </em>
<em>so we know Power = </em>
<em>volt^2/Resistance = </em>
<em>=</em><em>(150^2/250)(ohms/volts)</em>
<em>=</em><em>(22500/250)watt = 9</em><em>0</em><em> </em><em>w</em><em>a</em><em>t</em><em>t</em><em> </em>
<em>4)Heat energy (H) = Power(P)×Time(t)</em>
<em>4)Heat energy (H) = Power(P)×Time(t)= (90×2)joules = 180 joul</em><em>e</em><em>s</em>
<em>H</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>t</em><em> </em><em>h</em><em>e</em><em>l</em><em>p</em><em>s</em>
What is the definition of newton
Answer:
garden
Explanation: All the other habitats are aquatic
The wall will push back, in exactly the opposite direction, and with
exactly the same size force.
That's why the net force on the palm of your hand is zero, and that
in turn is the reason that your hand doesn't accelerate.
If you keep increasing the strength of your push, then eventually you
exceed the force that the wall is capable of delivering. Then the wall
crumbles and falls, your hand accelerates in the direction you're pushing,
and the crowd goes wild !
To solve the problem it is necessary to apply conservation of the moment and conservation of energy.
By conservation of the moment we know that

Where
M=Heavier mass
V = Velocity of heavier mass
m = lighter mass
v = velocity of lighter mass
That equation in function of the velocity of heavier mass is

Also we have that 
On the other hand we have from law of conservation of energy that

Where,
W_f = Work made by friction
KE = Kinetic Force
Applying this equation in heavier object.






Here we can apply the law of conservation of energy for light mass, then

Replacing the value of 

Deleting constants,

