We have:
Initial velocity (u) = 1.6 m/s
Constant acceleration (a) = 0.33 m/s²
Time (t) = 3.6 sec
There are five constant acceleration equations that would help us to find the velocity:
Since we have
and we want
We will use the first formula
m/s
In very very very round figures . . .
-- Jupiter is about 5.2 times as far from the sun as the earth is.
-- So when Jupiter and the EARTH are aligned in both orbits, Jupiter is about
(4.2) x (150 million kilometers) = 630 million kilometers
Time = (distance) / (speed)
The speed of light and radio is 300,000 km/second
Time = (630 million / 300 thousand)
<em>Time = 2,100 seconds</em>
That's 35 minutes.
Inertia is a term that qualitatively describes the ability of a substance to resist changes in its state of motion, while mass gives a quantitative value for inertia
Answer:
t = 1,144 s
Explanation:
The simple pendulum consists of an inextensible string with a mass at the tip, the angular velocity of this is
w = √( L / g)
The angular velocity is related to the frequency and period
w = 2π f
f = 1 / T
w = 2π / T
Let's replace
2π / T = √ (L / g)
T = 2π √ (g / L)
Let's calculate
T = 2π √ (9.81 / 18.5)
T = 4,576 s
The definition of period in the time it takes the ball to come and go to a given point (a revolution) in our case we go from the end to the middle point that is a quarter of the path
t = T / 4
t = 4,576 / 4
t = 1,144 s
there are different types of power so ill show you all the examples of power.