1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Free_Kalibri [48]
3 years ago
13

I WILL MARK YOU THE BRAINLIEST NO LINKS

Physics
1 answer:
dsp733 years ago
7 0
Sink because bowling balls sink
You might be interested in
Help! I don’t really know what it’s asking
Misha Larkins [42]
You have to do the math of each and see which one adds up to 66.5
6 0
2 years ago
In industry _____.
Alchen [17]

Answer:

B.useful products

Explanation:

industry is a sector that produces goods or services within an economy

6 0
3 years ago
Read 2 more answers
The temperature inside my refrigerator is about 4 degrees C. If I place a balloon in my fridge that initially has a temperature
maksim [4K]

v

Convert the given temperatures from celsius to kelvin since we are dealing with gas.

To convert to kelvin, add 273.15 to the temperature in celsius.

T1 = 22 + 273.15 = 295.15 k

T2 = 4 + 273.15 = 277.15 k

V1 = 0.5 L

Let's find the final volume (V2).

To solve for V2 apply Charles Law formula below:

\frac{V_1}{T_1}=\frac{V_2}{T_2}

5 0
1 year ago
Suppose that an asteroid traveling straight toward the center of the earth were to collide with our planet at the equator and bu
vlada-n [284]

Answer:

\frac{1}{10}M

Explanation:

To apply the concept of <u>angular momentum conservation</u>, there should be no external torque before and after

As the <u>asteroid is travelling directly towards the center of the Earth</u>, after impact ,it <u>does not impose any torque on earth's rotation,</u> So angular momentum of earth is conserved

⇒I_{1} \times W_{1} =I_{2} \times W_{2}

  • I_{1} is the moment of interia of earth before impact
  • W_{1} is the angular velocity of earth about an axis passing through the center of earth before impact
  • I_{2} is moment of interia of earth and asteroid system
  • W_{2} is the angular velocity of earth and asteroid system about the same axis

let  W_{1}=W

since \text{Time period of rotation}∝\frac{1}{\text{Angular velocity}}

⇒ if time period is to increase by 25%, which is \frac{5}{4} times, the angular velocity decreases 25% which is \frac{4}{5}  times

therefore W_{1} = \frac{4}{5} \times W_{1}

I_{1}=\frac{2}{5} \times M\times R^{2}(moment of inertia of solid sphere)

where M is mass of earth

           R is radius of earth

I_{2}=\frac{2}{5} \times M\times R^{2}+M_{1}\times R^{2}

(As given asteroid is very small compared to earth, we assume it be a particle compared to earth, therefore by parallel axis theorem we find its moment of inertia with respect to axis)

where M_{1} is mass of asteroid

⇒ \frac{2}{5} \times M\times R^{2} \times W_{1}=}(\frac{2}{5} \times M\times R^{2}+ M_{1}\times R^{2})\times(\frac{4}{5} \times W_{1})

\frac{1}{2} \times M\times R^{2}= (\frac{2}{5} \times M\times R^{2}+ M_{1}\times R^{2})

M_{1}\times R^{2}= \frac{1}{10} \times M\times R^{2}

⇒M_{1}=}\frac{1}{10} \times M

3 0
3 years ago
Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occ
Angelina_Jolie [31]

Answer:

a). \frac{\dot{W}}{m}= 311 kJ/kg

b). \frac{\dot{\sigma _{gen}}}{m}=0.9113 kJ/kg-K

Explanation:

a). The energy rate balance equation in the control volume is given by

\dot{Q} - \dot{W}+m(h_{1}-h_{2})=0

\frac{\dot{Q}}{m} = \frac{\dot{W}}{m}+m(h_{1}-h_{2})

\frac{\dot{W}}{m}= \frac{\dot{Q}}{m}+c_{p}(T_{1}-T_{2})

\frac{\dot{W}}{m}= -30+1.1(980-670)

\frac{\dot{W}}{m}= 311 kJ/kg

b). Entropy produced from the entropy balance equation in a control volume is given by

\frac{\dot{Q}}{T_{boundary}}+\dot{m}(s_{1}-s_{2})+\dot{\sigma _{gen}}=0

\frac{\dot{\sigma _{gen}}}{m}=\frac{-\frac{\dot{Q}}{m}}{T_{boundary}}+(s_{2}-s_{1})

\frac{\dot{\sigma _{gen}}}{m}=\frac{-\frac{\dot{Q}}{m}}{T_{boundary}}+c_{p}ln\frac{T_{2}}{T_{1}}-R.ln\frac{p_{2}}{p_{1}}

\frac{\dot{\sigma _{gen}}}{m}=\frac{-30}{315}+1.1ln\frac{670}{980}-0.287.ln\frac{100}{400}

\frac{\dot{\sigma _{gen}}}{m}=0.0952+0.4183+0.3978

\frac{\dot{\sigma _{gen}}}{m}=0.9113 kJ/kg-K

5 0
3 years ago
Other questions:
  • a bus carrying a band and all their equipment has an initial velocity of 14 m/s. it accelerates for 3seconds
    7·1 answer
  • What action within the heart creates the characteristic “lib-dub” heartbeat?
    15·2 answers
  • Use what you know about mass and how you use it to calculate force in the following situation. If each washer has a mass of 4.9
    15·2 answers
  • A battery with an emf of 1.50 V has an internal resistance r. When connected to a resistor R, the terminal voltage is 1.40 V and
    15·1 answer
  • Within a vacuum, the property to all electromagnetic waves is their WHAT?
    10·1 answer
  • a wire carrying 1.5 A passes through a 48 mT magnetic field the wire is peremndicular to the field and makes a quarter circle tu
    9·1 answer
  • An object attached to an ideal spring oscillates with an angular frequency of 2.81 rad/s. the object has a maximum displacement
    12·1 answer
  • Substance A has twice the specific heat capacity as substance B. If 1000 J of heat are added to 1.0 kg of each substance, compar
    7·1 answer
  • What is the matter made of
    12·1 answer
  • The graph shows the federal budget from 1980 to 2010. In which period did the federal budget show the greatest deficit?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!