The moment of inertia is the rotational analog of mass, and it is given by
the product of mass and the square of the distance from the axis.
- The moment of inertia changes as the position of the weight is changed, which indicates that; statement is incorrect
Reasons:
The weight on each arm that have adjustable positions can be considered as point masses.
The moment of inertia of a point mass is <em>I</em> = m·r²
Where;
m = The mass of the weight
r = The distance (position) from the center to which the weight is adjusted
Therefore;
The moment of inertia, <em>I </em>∝ r²
Which gives;
Doubling the distance from the center of rotation, increases the moment of inertia by factor of 4.
Therefore, the statement contradicts the relationship between the radius of rotation and moment of inertia.
Learn more about moment of inertia here:
brainly.com/question/4454769
friction is the resistance that one surface or object encounters when moving over another. Due to gravity pulling everything down things need to friction in order to move
i hope this helps :/
Explanation:
In everyday use and in kinematics, the speed of an object is the magnitude of the rate of change of its position with time or the magnitude of the change of its position per unit of time; it is thus a scalar quantity.
SI unit: m/s, m s−1
s=d/t
If you increase the mass m of the car, the force F will increase, while acceleration a is kept constant. Because F and m are directly proportional.
If you increase the acceleration a of the car, the force F will increase, while mass m is kept constant. Because F and a are directly proportional.
How can Newton's laws be verified experimentally; is by setting this experiment, and changing one variable while keeping the other constant, then observe the change in F.
Hope this helps.
sure its kinda sad a random person breaks your heart