For fundamental frequency of a string to occur, the length of the string has to be half the wavelength. That is,
1/2y = L, where L = length of the string, y = wavelength.
Therefore,
y = 2L = 2*0.75 =1.5 m
Additionally,
y = v/f Where v = wave speed, and f = ferquncy
Then,
v = y*f = 1.5*220 = 330 m/s
Answer:
<em>The bullet was 0.52 seconds in the air.</em>
Explanation:
<u>Horizontal Motion
</u>
It occurs when an object is thrown horizontally with a speed v from a height h.
The object describes a curved path ruled exclusively by gravity until it hits the ground.
To calculate the time the object takes to hit the ground, we use the following equation:

Note it doesn't depend on the initial velocity but on the height.
The bullet is fired horizontally at h=1.3 m, thus:


t = 0.52 s
The bullet was 0.52 seconds in the air.
Answer:
The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
Explanation:
Given that,
Wavelength = 400 nm
Energy 
We need to calculate the longest wavelength of light that is capable of ejecting electrons from that metal
Using formula of energy


Put the value into the formula



Hence, The longest wavelength of light that is capable of ejecting electrons from that metal is 1292 nm.
A because the earth have four season and four name for its tilt around the sun. one aphelion prehelion but spring and fall is balance. when its summer in the north it is cold in the south because of son rays