Answer:
d- Earth revolves around the sun.
Explanation:
Earth rotation can be defined as the amount of time taken by planet earth to complete its spinning movement on its axis.
This ultimately implies that, the rotation of earth refers to the time taken by earth to rotate once on its axis. One spinning movement of the earth on its axis takes approximately 24 hours to complete with respect to the sun.
On the other hand, earth revolution can be defined as a complete trip along a path around the sun. This path is known as an orbit and it typically takes the Earth 365¼ days to complete it's journey around the Sun.
When a constellation (stars) changes its position in the sky, at the same time of the evening and over a period of several weeks; it ultimately implies or is an evidence that Earth revolves around the sun.
Answer:
The magnitude of the electric field is 5.75 N/C towards positive x- axis.
Explanation:
Given that,
Point charge at origin = 2 nC
Second charge = 5 nC
Distance at x axis = 8 m
We need to calculate the electric field at the point x = 2 m
Using formula of electric field

Put the value into the formula


The direction is toward positive x- axis.
Hence, The magnitude of the electric field is 5.75 N/C towards positive x- axis.
Answer:
Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is equivalent to a statement that the heat transfer coefficient, which mediates between heat losses and temperature differences, is a constant. This condition is generally met in heat conduction (where it is guaranteed by Fourier's law) as the thermal conductivity of most materials is only weakly dependent on temperature. In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling holds only for very small temperature differences.
When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of temperature-difference over time. This characteristic decay of the temperature-difference is also associated with Newton's law of cooling
What is the question asking?