Answer: 1.51 km
Explanation:
<u>Coulomb's Law:</u> The electrostatic force between two charge particles Q: and Q2 is directly proportional to product of magnitude of charges and inversely proportional to square of separation distance between them.
Or, 
Where Q1 and Q2 are magnitude of two charges and r is distance between them:
<u>Given:</u>
Q1 = Charge near top of cloud = 48.8 C
Q2 = Charge near the bottom of cloud = -41.7 C
Force between charge at top and bottom of cloud (i.e. between Q: and Q2) (F) = 7.98 x 10^6N
k = 8.99 x 109Nm^2/C^2
<u>So,</u>

Therefore, the separation between the two charges (r) = 1.51 km
Answer:
x = -1.20 m
y = -1.12 m
Explanation:
as we know that four masses and their position is given as
5.0 kg (0, 0)
2.9 kg (0, 3.2)
4 kg (2.5, 0)
8.3 kg (x, y)
As we know that the formula of center of gravity is given as




Similarly for y direction we have




Answer:

Explanation:
The density changes means that the length in the direction of the motion is changed.
Therefore,

Given :
Side, b = h = 0.13 m
Mass, m = 3.3 kg
Density = 8100 
So,


l = 0.024 m
Then for relativistic length contraction,







Therefore, the speed of the observer relative to the cube is 0.9833 c (in the units of c).
Answer:

Explanation:
<u>Vertical Launch Upwards</u>
In a vertical launch upwards, an object is launched vertically up from a height H without taking into consideration any kind of friction with the air.
If vo is the initial speed and g is the acceleration of gravity, the maximum height reached by the object is given by:

The object referred to in the question is thrown from a height H=0 and the maximum height is hm=77.5 m.
(a)
To find the initial speed we solve for vo:



(b)
The maximum time or the time taken by the object to reach its highest point is calculated as follows:


