Answer:
The three ways thermal energy is transferred are;
1) Conduction
2) Convection
3) Radiation
Explanation:
1) The conduction of the heat from the open flame to the marshmallow is through the direct contact of the flame with the marshmallow, such that the flame the region of the combustion reaction, that produces light and heat touches the marshmallow
2) The convection process is the transfer of heat from the rising heated combustion products, as well as the heated air that rises from the flame
3) The radiation heat transfer is the transfer of the heat from the fire to the marshmallows directly by the heat the moves in the form of electromagnetic waves at temperatures above 1000 K, without the need for a medium, such that the marshmallow can be heated by the heat coming from side of the flame.
Answer:
2577 K
Explanation:
Power radiated , P = σεAT⁴ where σ = Stefan-Boltzmann constant = 5.6704 × 10⁻⁸ W/m²K⁴, ε = emissivity of bulb filament = 0.8, A = surface area of bulb = 30 mm² = 30 × 10⁻⁶ m² and T = operating temperature of filament.
So, T = ⁴√(P/σεA)
Since P = 60 W, we substitute the vales of the variables into T. So,
T = ⁴√(P/σεA)
= ⁴√(60 W/(5.6704 × 10⁻⁸ W/m²K⁴ × 0.8 × 30 × 10⁻⁶ m²)
= ⁴√(60 W/(136.0896 × 10⁻¹⁴ W/K⁴)
= ⁴√(60 W/(13608.96 × 10⁻¹⁶ W/K⁴)
= ⁴√(0.00441 × 10¹⁶K⁴)
= 0.2577 × 10⁴ K
= 2577 K
The energy of a wave is directly proportional to the square of the amplitude of the wave.
<h3>What is the relationship between energy and amplitude?</h3>
There is direct relationship between energy of the wave and the amplitude of the wave. The energy transported by a wave is directly proportional to the square of the amplitude of the wave. This means if energy is increase the amplitude of wave becomes double and vice versa.
Energy = (amplitude)2
So we can conclude that the energy of a wave is directly proportional to the square of the amplitude of the wave.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Answer:
The thrust is 
Explanation:
Given that,
Mass of gas, 
The rate at which the gas is expelling, 
We need to find the thrust produced by the gas.
We know that force is equal to the rate of change of momentum. So,

Also, p = mv

So,

So, the thrust is 
energy never disappears, for example, if you give some kinetic energy to a ball and it stops few seconds later, friction steals this energy to ground which ball was going on. "Law of Conservation of Energy" tell us that energy can't disappear