1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VLD [36.1K]
3 years ago
5

What is the displacement of a person that ran 15 minutes if he or she runs at an average velocity of 16 km/hr west

Physics
1 answer:
a_sh-v [17]3 years ago
4 0

displacement =  velocity × time

                        =  16 × 15

                         = 240

You might be interested in
A cube has a drag coefficient of 0.8. what would be the terminal velocity of a sugar cube 1 cm on a side in air (ρ = 1.2 kg/m3)?
kramer
To answer this question, we should know the formula for the terminal velocity. The formula is written below:

v = √(2mg/ρAC)
where
m is the mass
g is 9.81 m/s²
ρ is density
A is area
C is the drag coefficient

Let's determine the mass, m, to be density*volume.
Volume = s³ = (1 cm*1 m/100 cm)³ = 10⁻⁶ m³
m = (1.6×10³ kg/m³)(10⁻⁶ m³) = 1.6×10⁻³ kg
A = (1 cm * 1 m/100 cm)² = 10⁻⁴ m²

v = √(2*1.6×10⁻³ kg*9.81 m/s²/1.6×10³ kg/m³*10⁻⁴ m²*0.8)
<em>v = 0.495 m/s</em>
7 0
3 years ago
an 1150kg elevator moving down speeds up at a rate of 3.5m/s. what is the tension in the supporting cables?
gtnhenbr [62]

Answer:

The tension force in the supporting cables is 7245N

Explanation:

There are two forces acting on the elevator: the force of gravity pointing down (+) with magnitude (elevator mass) x (gravitational acceleration), and the tension force of the cable pointing up (-) with an unknown magnitude F. The net force is the sum of these forces:

F_{net} = F_g - F = m\cdot g - F\\

We are given the resulting acceleration along with the mass, i.e., we know the net force, allowing us to solve for F:

1150kg\cdot 3.5\frac{m}{s^2}= 1150kg \cdot 9.8\frac{m}{s^2}-F\\\implies F = 1150kg\cdot(9.8-3.5)\frac{m}{s^2}= 7245N

The tension force F in the supporting cables is 7245N


3 0
3 years ago
What pushes against gravity in: a main sequence star, a white dwarf, a neutron star, and a black hole? electron degeneracy, neut
Inga [223]

Answer:

heat pressure, electron degeneracy, neutron degeneracy, and nothing

Explanation:

Main Sequence Star: It is a star in which nuclear fusion is happening in the core of the star. Hydrogen molecules fuse together to generate Helium. This nuclear fusion generates outward gas pressure and radiation pressure which balances the inward gravity thus creating an equilibrium which keeps the stars in shape.

White dwarf: It is the end stage of a medium sized star like the Sun. Outer layers of the star are thrown in the form a shell/bubble leaving a small and dense core in the center called as white dwarf. This core consists of carbon and oxygen. Nuclear fusion doesn't occur in the core of white dwarfs. The inward gravity is balanced by the electron degeneracy pressure. Thus these stars will keep on radiating the remaining heat and will turn in to a black dwarf at the end.

Neutron Star: This is the end stage of a supermassive star (1-3 times the mass of the Sun). At the last stage of the life the core collapses. In these stars the inward gravity is so huge that the pressure overcomes the electron degeneracy pressure and crushes together the electron and proton to form neutron. The neutron then stops the collapse and balances the inward gravity.

Black Hole: This is the end stage of a hyper massive stars weighing more than 3 times the mass of the Sun. The inward gravitational force is so huge that even the neutrons are not able to stop the collapse the core. thus the mass of the star collapses into a very small area of immense gravity. There is nothing that can balance this inward gravity.

3 0
2 years ago
In terms of volume,how do ml &amp; cm3 relate to one another?
Keith_Richards [23]

1 milliliter = 1 cubic centimeter (cm^3)

3 0
3 years ago
Read 2 more answers
As an interstellar cloud of hydrogen gas shrinks in size, its rate of rotation
FinnZ [79.3K]

Answer:

INCREASES, BECAUSE ITS ANGULAR MOMENTUM IS CONSERVED.

Explanation: Interstellar cloud of Hydrogen is an accumulation of Hydrogen gas in the cloud.

As the Interstellar cloud of Hydrogen shrinks (reduces) in size,the rate of rotation of the shrinked Interstellar cloud Increases because its angular momentum is conserved. GASEOUS MOLECULES MAKE UP ABOUT 99% OF THE INTERSTELLAR CLOUD WITH HYDROGEN HAVING ABOUT 90% OF THE VOLUME OF GASES IN THE INTERSTELLAR CLOUD.

4 0
3 years ago
Other questions:
  • What is the structure located inside the nucleus of a cell that contains an organism’s genetic code?
    7·1 answer
  • Which of the following has more inertia: (a) a rubber ball and a stone of the same size? (b) a bicycle and a train? (c) a five-r
    15·2 answers
  • Which method of heat transfer causes you to get burned when you touch a hot pan
    14·1 answer
  • PLEASE PLEASE HELP ME!
    9·1 answer
  • Explain how a generator creates electricity.
    11·2 answers
  • (a) How much gravitational potential energy (relative to the ground on which it is built) is stored in the Great Pyramid of Cheo
    12·1 answer
  • After the NEAR spacecraft passed Mathilde, on several occasions rocket propellant was expelled to adjust the spacecraft's moment
    11·1 answer
  • A boy pulls with a 92.5 N force on the handle of a 27.5 kg wagon while the handle makes an angle of 35.0 degrees with the horizo
    11·1 answer
  • Future space rockets might propel themselves by firing laser beams, rather than exhaust gases, out the back. The acceleration wo
    8·1 answer
  • A small metal ball with a mass of m = 62.0 g is attached to a string of length l = 1.85 m. It is held at an angle of θ = 48.5° w
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!