You know that when the displacement is equal to the amplitude (A), the velocity is zero, which implies that the kinetic energy (KE) is zeero, so the total mechanical energy (ME) is the potential energy (PE).
And you know that the potential energy, PE, is [ 1/2 ] k (x^2)
Then, use x = A, to calculate the PE in the point where ME = PE.
ME = PE = [1/2] k (A)^2.
At half of the amplitude, x = A/2 => PE = [ 1/2] k (A/2)^2
=> PE = [1/4] { [1/2]k(A)^2 } = .[1/4] ME
So, if PE is 1/4 of ME, KE is 3/4 of ME.
And the answer is 3/4
Answer:
W = - 118.24 J (negative sign shows that work is done on piston)
Explanation:
First, we find the change in internal energy of the diatomic gas by using the following formula:

where,
ΔU = Change in internal energy of gas = ?
n = no. of moles of gas = 0.0884 mole
Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)
Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K
ΔT = Rise in Temperature = 18.8 K
Therefore,

Now, we can apply First Law of Thermodynamics as follows:

where,
ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)
W = Work done = ?
Therefore,

<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>
Answer:
See explanation
Explanation:
We have to convert to angular velocity in rads-1 as follows;
Angular velocity in rad/s = 2π/60 × 1900 rpm = 199 rad/s
Given that
angular velocity =angle turned /time taken
Time taken = angle turned/angular velocity
Converting 35° to radians we have;
35 × π/180 = 0.61 radians
Time taken = 0.61 radians/199 rad/s
Time taken = 0.0031 seconds
Answer:
the plot structure defines a story's setting
Below are the examples of work being done on an object
Carrying a box up a flight of stairs.
Lifting a bag of groceries.
Lifting a rock off the ground.
Pushing a grocery cart through the store.
<h3>Workdone</h3>
Work is said to be done when a force applied moves a distance
Work done = force × distance
Learn more about work done:
brainly.com/question/18762601