Answer:
required distance is 233.35 m
Explanation:
Given the data in the question;
Sound intensity
= 1.62 × 10⁻⁶ W/m²
distance r = 165 m
at what distance from the explosion is the sound intensity half this value?
we know that;
Sound intensity
is proportional to 1/(distance)²
i.e
∝ 1/r²
Now, let r² be the distance where sound intensity is half, i.e
₂ =
₁/2
Hence,
₂/
₁ = r₁²/r₂²
1/2 = (165)²/ r₂²
r₂² = 2 × (165)²
r₂² = 2 × 27225
r₂² = 54450
r₂ = √54450
r₂ = 233.35 m
Therefore, required distance is 233.35 m
7.Jupiter is the largest planet in our solar system at nearly 11 times the size of Earth and 317 times its mass.
When we look at Jupiter, we're actually seeing the outermost layer of its clouds.
The Great Red Spot is a storm in Jupiter's southern hemisphere with crimson-colored clouds that spin counterclockwise at wind speeds
8. 58,232 km
The second largest planet in the solar system
Surface. As a gas giant, Saturn doesn't have a true surface. The planet is mostly swirling gases and liquids deeper down.
Saturn's rings are thought to be pieces of comets, asteroids or shattered moons that broke up before they reached the planet,
9. Unlike the other planets of the solar system, Uranus is tilted so far that it essentially orbits the sun on its side, with the axis of its spin nearly pointing at the star.
Uranus' atmosphere is mostly hydrogen and helium, with a small amount of methane and traces of water and ammonia.
As an ice giant, Uranus doesn't have a true surface. The planet is mostly swirling fluids. While a spacecraft would have nowhere to land on Uranus, it wouldn't be able to fly through its atmosphere unscathed either. The extreme pressures and temperatures would destroy a metal spacecraft.
10. 24,622 km
Neptune has an average temperature of -353 Fahrenheit (-214 Celsius).
Neptune's atmosphere is made up mostly of hydrogen and helium with just a little bit of methane.
For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left
~686newtons on earth and
~1617 newtons on jupiter
the formula is weight = gravitational acceleration * mass of the object