Answer:
At equilibrium, reactants predominate.
Explanation:
For every reaction, the equilibrium constant is defined as the ratio between the concentration of products and reactants. Thus, for the reaction N2 (g) + O2 (g) ⇌ 2NO the expression of its equilibrium constant is:
![Keq = \frac{[NO]^{2}}{[O_{2} ][N_{2}]}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BO_%7B2%7D%20%5D%5BN_%7B2%7D%5D%7D)
Since the equilibrium constant is Keq = 4.20x10-31 the concentration of reactants O2 and N2 must be much higher than products to obtain such a small number as 4.20x10-31 at the equilibrium. Hence, at equilibrium reactants predominate.
What do the bubbles indicate? <span>chemical reaction with HCl, release of H2(g)
</span>
Where the substances are located in relation to one another on the periodic table and the activity series? <span>A is above B on the periodic table but B is above A in the activity series.
</span>
The name of the family the substances could be in ? <span>alkaline earth, alkali metals. Either group 1 or group 2.
</span>
<span>What substance will have a larger atomic radius? B</span>
What substance will have a larger ionization energy? A
RCOOH + NaOH → RCOONa + H₂O (salt and water)
RCOOH + OH⁻ → RCOO⁻ + H₂O
Answer: Lithium
Explanation:
The ratio for the reaction of Li and water is the same, but there are more moles of water than lithium. Therefore, lithium is the limiting reactant.
Answer:

Explanation:
They gave us the masses of two reactants and asked us to determine the mass of the product.
This looks like a limiting reactant problem.
1. Assemble the information
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
Mᵣ: 239.27 32.00 207.2
2PbS + 3O₂ ⟶ 2Pb + 2SO₃
m/g: 2.54 1.88
2. Calculate the moles of each reactant

3. Calculate the moles of Pb from each reactant

4. Calculate the mass of Pb
