The given question is incomplete. The complete question is :
A chemist prepares a solution of barium acetate by measuring out 32 g of barium acetate into a 350 ml volumetric flask and filling the flask to the mark with water. Calculate the concentration in of the chemist's barium acetate solution. Round your answer to significant digits.
Answer: The concentration of barium acetate solution is 0.375 mol/L
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in ml
moles of
= 
Now put all the given values in the formula of molality, we get


Therefore, the concentration of solution is 0.375 mol/L
Answer:
ΔH for formation of 197g Fe⁰ = 1.503 x 10³ Kj => Answer choice 'B'
Explanation:
Given Fe₂O₃(s) + 2Al⁰(s) => Al₂O₃(s) + 2Fe⁰(s) + 852Kj
197g Fe⁰ = (197g/55.85g/mol) = 3.527 mol Fe⁰(s)
From balanced standard equation 2 moles Fe⁰(s) => 852Kj, then ...
3.527 mole yield (a higher mole value) => (3.527/2) x 852Kj = 1,503Kj (a higher enthalpy value).
______
NOTE => If 2 moles Fe gives 852Kj (exo) as specified in equation, then a <u>higher energy value</u> would result if the moles of Fe⁰(s) is <u>higher than 2 moles</u>. The ratio of 3.638/2 will increase the listed equation heat value to a larger number because 197g Fe⁰(s) contains more than 2 moles of Fe⁰(s) => 3.527 mole Fe(s) in 197g. Had the problem asked for the heat loss from <u>less than two moles Fe⁰(s)</u> - say 100g Fe⁰(s) (=1.79mole Fe⁰(s)) - then one would use the fractional ratio (1.79/2) to reduce the enthalpy value less than 852Kj.
Answer:
Two electrons fit in the first shell out from the nucleus and eight fit in the second. Every element with more protons than the two of Helium needs to work on shells outside the first one. one you get to ten, you have filled the first two shells.
In a water molecule, oxygen forms one covalent bond with EACH of TWO hydrogen atoms. As a result, the oxygen atom has a stable arrangement of 8 valence electrons. Each hydrogen atom forms only one bond because it needs only two electrons to be stable.
I believe the answer is C
In amides, the carbonyl carbon is bonded to a nitrogen. The nitrogen in an amide can be bonded either to hydrogens, to carbons, or to both. ... Another way of thinking of an ester is that it is a carbonyl bonded to an alcohol. Thioesters are similar to esters, except a sulfur is in place of the oxygen.