Answer:
Explanation:
go around your house and tap random objects. For example, a sink. What noise did it make? was it loud or quiet? was it soft or hard? I hope this helps
Answer:
Explanation:
Given that,
B(t) = B0 cos(ωt) • k
Radius r = a
Inner radius r' = a/2 and resistance R.
Current in the loop as a function of time I(t) =?
Magnetic flux is given as
Φ = BA
And the Area is given as
A = πr², where r = a/2
A = πa²/4
Then,
Φ = ¼ Bπa²
Φ(t) = ¼πa²Bo•Cos(ωt)
Then, the EMF is given as
ε(t) = -dΦ/dt
ε(t) = -¼πa²Bo • -ωSin(ωt)
ε(t) = ¼ωπa²Bo•Sin(ωt)
From ohms law,
ε = iR
Then, i = ε/R
I(t) = ¼ωπa²Bo•Sin(ωt) /R
This is the current induced in the loop.
Check attachment for better understanding
Answer:
a) the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis
b) the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)
Explanation:
a) the polarization the determined wave oscillates the electric field, which is the z axis
As the wave travels on the negative x-axis and the magnetic field is perpendicular, this field goes on the positive y-axis
the oscillation of this field is in phase, when the magnetic field goes in the negative direction of y, the elective field goes in the positive direction of the z axis
be) in the case of a polarization in the xi plane the magnetic field must go in the direction of the magnetic field perpendicular to this electric field and the speed in the negative x the magnetic field goes in the x direction and in the direction (1, - 1.1)
Answer:
F = 294.3 [N]
Explanation:
To solve this problem we must use Newton's second law which tells us that force is equal to the product of mass by acceleration. It is this particular case the acceleration is due to the gravitational acceleration since the body is in free fall.
Therefore we have:
F = m*g
where:
F = force [N]
m = mass = 30 [kg]
g = gravity acceleration = 9.81 [m/s^2]
F = 30*9.81
F = 294.3 [N]
(a) At a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
(b) If the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
<h3>
Conservation of mechanical energy</h3>
The effect of height and gravity on speed on the given planet Epislon is determined by applying the principle of conservation of mechanical energy as shown below;
ΔK.E = ΔP.E
¹/₂m(v²- u²) = mg(hi - hf)
¹/₂(v²- u²) = g(0 - hf)
v² - u² = -2ghf
v² = u² - 2ghf
where;
- v is the final velocity at upper level
- u is the initial velocity
- hf is final height
- g is acceleration due to gravity
when u² = 2gh, then v² = 0,
when gravity reduces, u² > 2gh, and v² > 0
Thus, at a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
<h3>Final speed</h3>
v² = u² - 2ghf
where;
- u is the initial speed = 5 m/s
- g is acceleration due to gravity and its less than 9.8 m/s²
- v is final speed
- hf is equal height
Since g on Epislon is less than 9.8 m/s² of Earth;
5² - 2ghf > 3 m/s
Thus, if the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
Learn more about conservation of mechanical energy here: brainly.com/question/6852965