Answer:
stars will emit more light due to their Luminosity, so they look very bright.
Explanation:
Luminous refers to..,
- The total amount of energy radiated by a star or other celestial object per second.
- Therefore it is the power output of a star.
Most of the really bright stars in our sky are not that very close to us yet they look bright because of the Luminosity of the star.
These stars are intrinsically so luminous.
A star's power output across all wavelengths is called its bolometric luminosity.
A star with large luminosity will have more measure of radiated electromagnetic power meaning.
so it will emit more light than a low luminosity star.
Hence,
those stars can easily be seen even across great distance.
learn more about Luminosity of the star here:
<u>brainly.com/question/13912549</u>
<u />
#SPJ4
Answer:
see below
Explanation:
First, the obvious, as you press the gas pedal harder the acceleration goes up as well. Conversely, is you do not press the pedal, you will not accelerate. This determines that is I press the gas pedal, it will CAUSE the car to accelerate. This proves causation.
Now, correlation. The definition of correlation in statistics is any statistical relationship between two random variables or data. This simply means that these two events are connected to one another. A POSITIVE correlation is when two correlated events move in the same direction as one another. I have added a graph to help visualize this. In this problem as the gas is pressed harder, the acceleration increases. If the pressure on the pedal was decreased, then the acceleration also decreases. If the pressure on the pedal is constant, the the acceleration is constant.
I hope this helps!
Answer:
The velocity of the arrow after 3 seconds is 30.02 m/s.
Explanation:
It is given that,
An arrow is shot upward on the moon with velocity of 35 m/s, its height after t seconds is given by the equation:

We know that the rate of change of displacement is equal to the velocity of an object.

Velocity of the arrow after 3 seconds will be :

So, the velocity of the arrow after 3 seconds is 30.02 m/s. Hence, this is the required solution.
Answer:
The mass of the banana is m and it is at height h.
Applying the Law of Conservation of Energy
Total Energy before fall = Total Energy after fall
=
Here, total energy is the sum of kinetic energy and potential energy
+
=
+
(a)
When banana is at height h, it has
= 0 and
= mgh
and when it reaches the river, it has
= 1/2m
and
= 0
Putting the values in equation (a)
0 + mgh = 1/2m
+ 0
mgh = 1/2m
<em>cutting 'm' from both sides</em>
<em> </em>gh = 1/2
v = 
Hence, the velocity of banana before hitting the water is
v = 
Momentum of the object can be calculated by multiplying the mass of the object and the velocity of the moving object. In this case, the starting situation should be the object should be moving, else there is no velocity and thus momentum is equal to zero .Answer is C