During the day, due to the existence of sunlight, the procedure of photosynthesis elevations over that of respiration. Photosynthesis uses carbon dioxide to produce carbohydrates removing oxygen as a byproduct. During the night, because there is no sunlight, the rate of photosynthesis decreases. This, therefore, drives the rate of respiration to surpass the speed of photosynthesis. In respiration, oxygen is consumed and carbon dioxide is dismissed.
<h3>What is
photosynthesis?</h3>
- Photosynthesis is the process by which manufacturers use sunlight, water, and carbon dioxide to produce oxygen and energy in the form of sugar.
- The primary position of photosynthesis is to transform solar energy into chemical energy and then reserve that chemical energy for prospective use. For the most part, the planet's living designs are powered by this process.
- An illustration of photosynthesis is how plants convert sugar and significance from water, air, and sunlight into energy to grow. Description of photosynthesis is the procedure through which plants use water and carbon dioxide to assemble their food, grow and remove excess oxygen into the air.
To learn more about photosynthesis, refer to:
brainly.com/question/19160081
#SPJ4
Answer : The pressure of the gas using both the ideal gas law and the van der Waals equation is, 60.2 atm and 44.6 atm respectively.
Explanation :
First we have to calculate the pressure of gas by using ideal gas equation.

where,
P = Pressure of
gas = ?
V = Volume of
gas = 0.805 L
n = number of moles
= 1.93 mole
R = Gas constant = 
T = Temperature of
gas = 306 K
Now put all the given values in above equation, we get:


Now we have to calculate the pressure of gas by using van der Waals equation.

P = Pressure of
gas = ?
V = Volume of
gas = 0.805 L
n = number of moles
= 1.93 mole
R = Gas constant = 
T = Temperature of
gas = 306 K
a = pressure constant = 
b = volume constant = 
Now put all the given values in above equation, we get:
![(P+\frac{(4.19L^2atm/mol^2)\times (1.93mole)^2}{(0.805L)^2})[0.805L-(1.93mole)\times (5.11\times 10^{-2}L/mol)]=1.93mole\times (0.0821L.atm/mol.K)\times 306K](https://tex.z-dn.net/?f=%28P%2B%5Cfrac%7B%284.19L%5E2atm%2Fmol%5E2%29%5Ctimes%20%281.93mole%29%5E2%7D%7B%280.805L%29%5E2%7D%29%5B0.805L-%281.93mole%29%5Ctimes%20%285.11%5Ctimes%2010%5E%7B-2%7DL%2Fmol%29%5D%3D1.93mole%5Ctimes%20%280.0821L.atm%2Fmol.K%29%5Ctimes%20306K)

Therefore, the pressure of the gas using both the ideal gas law and the van der Waals equation is, 60.2 atm and 44.6 atm respectively.
Rock formed by heat and pressure
Answer: the line Spectra of hydrogen lies between the ultra-violet, visible light and infra-red of the electro magnetic spectrum
Explanation:
Electromagnetic radiation spans an wide range of wavelengths and frequencies. This range is called the electromagnetic spectrum. The electromagnetic spectrum is generally divided into seven regions, in order of decreasing wavelength and increasing energy and frequency. The 7 regions includes; radio waves, microwaves, infrared (IR), visible light, ultraviolet (UV), X-rays and gamma rays.
lower-energy radiation, such as radio waves, is expressed as frequency while microwaves, infrared, visible and UV light are usually expressed as wavelength and finally, higher-energy radiation such as X-rays and gamma rays, is expressed in terms of energy per photon.
Therefore, hydrogen lies between the ultra-violet, visible light and infra-red region of the electro magnetic spectrum.
Answer:
Water has the greatest ΔEN
ΔEN H₂O → 3.4 - 2.1 = 1.3 Option D.
Explanation:
We should find the Electronegativity data in the Periodic table for all the elements:
C : 2.6
O: 3.4
H: 2.1
S: 2.6
N: 3.0
a. ΔEN CO₂ → 3.4 - 2.6 = 0.4
b. ΔEN H₂S → 2.6 - 2.1 = 0.5
c. ΔEN NH₃ → 3 - 2.1= 0.9
d. ΔEN H₂O → 3.4 - 2.1 = 1.3