Answer:
The percent by mass of water in this crystal is:
Explanation:
This exercise can be easily solved using a simple rule of three where the initial weight of the hydrated crystal (6,235 g) is taken into account as 100% of the mass, and the percentage to which the mass of 4.90 g corresponds (after getting warm). First, the values and unknown variable are established:
- 6,235 g = 100%
- 4.90 g = X
And the value of the variable X is found:
- X = (4.90 g * 100%) / 6,235 g
- X = approximately 78.6%.
The calculated value is not yet the percentage of the water, since the water after heating the glass has evaporated, therefore, the remaining percentage must be taken, which can be calculated by subtraction:
- Water percentage = Total percentage - Percentage after heating.
- <u>Water percentage = 100% - 78.6% = 21.4%</u>
The heavy one because mass times force is equal to speed. The lighter one has less mass to it goes faster without as much effort. I hope that helps!
Answer: Mass Of CFC that needs to evaporate for the freezing of water = 328.24 g
Explanation: Heat gained by the CFC = Heat lost by water
Heat lost by water = Heat required to take water's temperature to 0°c + Heat required to freeze water at 0°c
Heat required to take water's temperature from 33°c to 0°c = mCΔT
m = 201g, C = 4.18 J/(gK), ΔT = 33
mCΔT = 201 × 4.18 × 33 = 27725.94 J
Heat required to freeze water at 0°c = mL
m = 201g, L = 334 J/g
mL = 201 × 334 = 67134 J
Heat gained by CFC to vaporize = mH = 27725.94 + 67134 = 94859.94 J
H = 289 J/g, m = ?
m × 289 = 94859.9
m = 328.24 g
QED!!
Explanation:
I don't know this answer what Hydrogen Helium lithium